Periodic solutions for some nonautonomous p ( t ) -Laplacian Hamiltonian systems

Liang Zhang; X. H. Tang

Applications of Mathematics (2013)

  • Volume: 58, Issue: 1, page 39-61
  • ISSN: 0862-7940

Abstract

top
In this paper, we deal with the existence of periodic solutions of the p ( t ) -Laplacian Hamiltonian system d d t ( | u ˙ ( t ) | p ( t ) - 2 u ˙ ( t ) ) = F ( t , u ( t ) ) a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.

How to cite

top

Zhang, Liang, and Tang, X. H.. "Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems." Applications of Mathematics 58.1 (2013): 39-61. <http://eudml.org/doc/251426>.

@article{Zhang2013,
abstract = {In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system \[ \{\left\lbrace \begin\{array\}\{ll\} \dfrac\{\{\rm d\}\}\{\{\rm d\}t\}(|\dot\{u\}(t)|^\{p(t)-2\}\dot\{u\}(t)) =\nabla F(t,u(t))\quad \text\{a.e.\} \ t\in [0,T] ,\\ u(0)-u(T)=\dot\{u\}(0)-\dot\{u\}(T)=0. \end\{array\}\right.\} \] Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.},
author = {Zhang, Liang, Tang, X. H.},
journal = {Applications of Mathematics},
keywords = {periodic solution; Hamiltonian system; $p(t)$-Laplacian system; critical point; minimax principle; least action principle; periodic solution; Hamiltonian system; -Laplacian system; critical point; minimax principle; least action principle},
language = {eng},
number = {1},
pages = {39-61},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems},
url = {http://eudml.org/doc/251426},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Zhang, Liang
AU - Tang, X. H.
TI - Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 39
EP - 61
AB - In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system \[ {\left\lbrace \begin{array}{ll} \dfrac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t)) =\nabla F(t,u(t))\quad \text{a.e.} \ t\in [0,T] ,\\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0. \end{array}\right.} \] Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.
LA - eng
KW - periodic solution; Hamiltonian system; $p(t)$-Laplacian system; critical point; minimax principle; least action principle; periodic solution; Hamiltonian system; -Laplacian system; critical point; minimax principle; least action principle
UR - http://eudml.org/doc/251426
ER -

References

top
  1. Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
  2. Fan, X.-L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282 (2003), 453-464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
  3. Fan, X.-L., Zhao, D., On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), 424-446. (2001) Zbl1028.46041MR1866056
  4. Fan, X.-L., Zhang, Q.-H., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
  5. Fei, G.-H., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ., paper No. 8 (2002), 1-12. (2002) Zbl0999.37039MR1884977
  6. Feng, J.-X., Han, Z.-Q., 10.1016/j.jmaa.2005.11.039, J. Math. Anal. Appl. 323 (2006), 1264-1278. (2006) Zbl1109.34032MR2260179DOI10.1016/j.jmaa.2005.11.039
  7. Jiang, Q., Tang, C. L., 10.1016/j.jmaa.2006.05.064, J. Math. Anal. Appl. 328 (2007), 380-389. (2007) MR2285556DOI10.1016/j.jmaa.2006.05.064
  8. Li, S.-J., Willem, M., 10.1006/jmaa.1995.1002, J. Math. Anal. Appl. 189 (1995), 6-32. (1995) Zbl0820.58012MR1312028DOI10.1006/jmaa.1995.1002
  9. Liu, J. Q., 10.1016/0022-0396(89)90139-3, J. Differ. Equations 82 (1989), 372-385. (1989) Zbl0682.34032MR1027975DOI10.1016/0022-0396(89)90139-3
  10. Ma, S., Zhang, Y., 10.1016/j.jmaa.2008.10.027, J. Math. Anal. Appl. 351 (2009), 469-479. (2009) Zbl1153.37009MR2472958DOI10.1016/j.jmaa.2008.10.027
  11. Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
  12. Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences, Vol. 74 Springer New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
  13. Rabinowitz, P. H., 10.1002/cpa.3160310203, Comm. Pure Appl. Math. 31 (1978), 157-184. (1978) Zbl0358.70014MR0467823DOI10.1002/cpa.3160310203
  14. Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
  15. Tang, C.-L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) Zbl0824.34043MR1312546DOI10.1006/jmaa.1995.1044
  16. Tang, C.-L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
  17. Tang, C.-L., Wu, X.-P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
  18. Tang, C.-L., Wu, X.-P., 10.1016/S0022-247X(02)00417-1, J. Math. Anal. Appl. 285 (2003), 8-16. (2003) Zbl1054.34075MR2000135DOI10.1016/S0022-247X(02)00417-1
  19. Tang, C.-L., Wu, X.-P., 10.1090/S0002-9939-03-07185-5, Proc. Am. Math. Soc. 132 (2004), 1295-1303. (2004) Zbl1055.34084MR2053333DOI10.1090/S0002-9939-03-07185-5
  20. Tao, Z.-L., Tang, C.-L., 10.1016/j.jmaa.2003.11.007, J. Math. Anal. Appl. 293 (2004), 435-445. (2004) Zbl1042.37047MR2053889DOI10.1016/j.jmaa.2003.11.007
  21. Wang, X.-J., Yuan, R., 10.1016/j.na.2008.01.017, Nonlinear Anal., Theory Methods Appl. 70 (2009), 866-880. (2009) Zbl1171.34030MR2468426DOI10.1016/j.na.2008.01.017
  22. Willem, M., Oscillations forcées de systèms hamiltoniens. Sémin. Anal. Non Linéaire, Univ. Besancon (1981). (1981) 
  23. Wu, X.-P., 10.1006/jmaa.1998.6181, J. Math. Anal. Appl. 230 (1999), 135-141. (1999) Zbl0922.34039MR1669593DOI10.1006/jmaa.1998.6181
  24. Wu, X.-P., Tang, C.-L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) Zbl0971.34027MR1704579DOI10.1006/jmaa.1999.6408
  25. Xu, B., Tang, C.-L., 10.1016/j.jmaa.2006.11.051, J. Math. Anal. Appl. 333 (2007), 1228-1236. (2007) Zbl1154.34331MR2331727DOI10.1016/j.jmaa.2006.11.051
  26. Ye, Y.-W., Tang, C.-L., 10.1016/j.jmaa.2008.03.021, J. Math. Anal. Appl. 344 (2008), 462-471. (2008) Zbl1142.37023MR2416320DOI10.1016/j.jmaa.2008.03.021
  27. Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66. (1987) DOI10.1070/IM1987v029n01ABEH000958
  28. Zhikov, V. V., On passage to the limit in nonlinear variational problems, Suss. Acad. Sci, Sb., Math. 183 (1992), 47-84. (1992) Zbl0791.35036MR1187249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.