Periodic solutions for some nonautonomous -Laplacian Hamiltonian systems
Applications of Mathematics (2013)
- Volume: 58, Issue: 1, page 39-61
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Liang, and Tang, X. H.. "Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems." Applications of Mathematics 58.1 (2013): 39-61. <http://eudml.org/doc/251426>.
@article{Zhang2013,
abstract = {In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system \[ \{\left\lbrace \begin\{array\}\{ll\} \dfrac\{\{\rm d\}\}\{\{\rm d\}t\}(|\dot\{u\}(t)|^\{p(t)-2\}\dot\{u\}(t)) =\nabla F(t,u(t))\quad \text\{a.e.\} \ t\in [0,T] ,\\ u(0)-u(T)=\dot\{u\}(0)-\dot\{u\}(T)=0. \end\{array\}\right.\} \]
Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.},
author = {Zhang, Liang, Tang, X. H.},
journal = {Applications of Mathematics},
keywords = {periodic solution; Hamiltonian system; $p(t)$-Laplacian system; critical point; minimax principle; least action principle; periodic solution; Hamiltonian system; -Laplacian system; critical point; minimax principle; least action principle},
language = {eng},
number = {1},
pages = {39-61},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems},
url = {http://eudml.org/doc/251426},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Zhang, Liang
AU - Tang, X. H.
TI - Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 39
EP - 61
AB - In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system \[ {\left\lbrace \begin{array}{ll} \dfrac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t)) =\nabla F(t,u(t))\quad \text{a.e.} \ t\in [0,T] ,\\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0. \end{array}\right.} \]
Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.
LA - eng
KW - periodic solution; Hamiltonian system; $p(t)$-Laplacian system; critical point; minimax principle; least action principle; periodic solution; Hamiltonian system; -Laplacian system; critical point; minimax principle; least action principle
UR - http://eudml.org/doc/251426
ER -
References
top- Berger, M. S., Schechter, M., 10.1016/0001-8708(77)90001-9, Adv. Math. 25 (1977), 97-132. (1977) Zbl0354.47025MR0500336DOI10.1016/0001-8708(77)90001-9
- Fan, X.-L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282 (2003), 453-464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
- Fan, X.-L., Zhao, D., On the spaces and , J. Math. Anal. Appl. 263 (2001), 424-446. (2001) Zbl1028.46041MR1866056
- Fan, X.-L., Zhang, Q.-H., 10.1016/S0362-546X(02)00150-5, Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. (2003) Zbl1146.35353MR1954585DOI10.1016/S0362-546X(02)00150-5
- Fei, G.-H., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ., paper No. 8 (2002), 1-12. (2002) Zbl0999.37039MR1884977
- Feng, J.-X., Han, Z.-Q., 10.1016/j.jmaa.2005.11.039, J. Math. Anal. Appl. 323 (2006), 1264-1278. (2006) Zbl1109.34032MR2260179DOI10.1016/j.jmaa.2005.11.039
- Jiang, Q., Tang, C. L., 10.1016/j.jmaa.2006.05.064, J. Math. Anal. Appl. 328 (2007), 380-389. (2007) MR2285556DOI10.1016/j.jmaa.2006.05.064
- Li, S.-J., Willem, M., 10.1006/jmaa.1995.1002, J. Math. Anal. Appl. 189 (1995), 6-32. (1995) Zbl0820.58012MR1312028DOI10.1006/jmaa.1995.1002
- Liu, J. Q., 10.1016/0022-0396(89)90139-3, J. Differ. Equations 82 (1989), 372-385. (1989) Zbl0682.34032MR1027975DOI10.1016/0022-0396(89)90139-3
- Ma, S., Zhang, Y., 10.1016/j.jmaa.2008.10.027, J. Math. Anal. Appl. 351 (2009), 469-479. (2009) Zbl1153.37009MR2472958DOI10.1016/j.jmaa.2008.10.027
- Mawhin, J., Semi-coercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) Zbl0647.49007MR0938142
- Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences, Vol. 74 Springer New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
- Rabinowitz, P. H., 10.1002/cpa.3160310203, Comm. Pure Appl. Math. 31 (1978), 157-184. (1978) Zbl0358.70014MR0467823DOI10.1002/cpa.3160310203
- Rabinowitz, P. H., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
- Tang, C.-L., 10.1006/jmaa.1995.1044, J. Math. Anal. Appl. 189 (1995), 671-675. (1995) Zbl0824.34043MR1312546DOI10.1006/jmaa.1995.1044
- Tang, C.-L., 10.1090/S0002-9939-98-04706-6, Proc. Am. Math. Soc. 126 (1998), 3263-3270. (1998) MR1476396DOI10.1090/S0002-9939-98-04706-6
- Tang, C.-L., Wu, X.-P., 10.1006/jmaa.2000.7401, J. Math. Anal. Appl. 259 (2001), 386-397. (2001) Zbl0999.34039MR1842066DOI10.1006/jmaa.2000.7401
- Tang, C.-L., Wu, X.-P., 10.1016/S0022-247X(02)00417-1, J. Math. Anal. Appl. 285 (2003), 8-16. (2003) Zbl1054.34075MR2000135DOI10.1016/S0022-247X(02)00417-1
- Tang, C.-L., Wu, X.-P., 10.1090/S0002-9939-03-07185-5, Proc. Am. Math. Soc. 132 (2004), 1295-1303. (2004) Zbl1055.34084MR2053333DOI10.1090/S0002-9939-03-07185-5
- Tao, Z.-L., Tang, C.-L., 10.1016/j.jmaa.2003.11.007, J. Math. Anal. Appl. 293 (2004), 435-445. (2004) Zbl1042.37047MR2053889DOI10.1016/j.jmaa.2003.11.007
- Wang, X.-J., Yuan, R., 10.1016/j.na.2008.01.017, Nonlinear Anal., Theory Methods Appl. 70 (2009), 866-880. (2009) Zbl1171.34030MR2468426DOI10.1016/j.na.2008.01.017
- Willem, M., Oscillations forcées de systèms hamiltoniens. Sémin. Anal. Non Linéaire, Univ. Besancon (1981). (1981)
- Wu, X.-P., 10.1006/jmaa.1998.6181, J. Math. Anal. Appl. 230 (1999), 135-141. (1999) Zbl0922.34039MR1669593DOI10.1006/jmaa.1998.6181
- Wu, X.-P., Tang, C.-L., 10.1006/jmaa.1999.6408, J. Math. Anal. Appl. 236 (1999), 227-235. (1999) Zbl0971.34027MR1704579DOI10.1006/jmaa.1999.6408
- Xu, B., Tang, C.-L., 10.1016/j.jmaa.2006.11.051, J. Math. Anal. Appl. 333 (2007), 1228-1236. (2007) Zbl1154.34331MR2331727DOI10.1016/j.jmaa.2006.11.051
- Ye, Y.-W., Tang, C.-L., 10.1016/j.jmaa.2008.03.021, J. Math. Anal. Appl. 344 (2008), 462-471. (2008) Zbl1142.37023MR2416320DOI10.1016/j.jmaa.2008.03.021
- Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66. (1987) DOI10.1070/IM1987v029n01ABEH000958
- Zhikov, V. V., On passage to the limit in nonlinear variational problems, Suss. Acad. Sci, Sb., Math. 183 (1992), 47-84. (1992) Zbl0791.35036MR1187249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.