Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem
Applications of Mathematics (2013)
- Volume: 58, Issue: 1, page 93-110
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYao, Qingliu. "Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem." Applications of Mathematics 58.1 (2013): 93-110. <http://eudml.org/doc/251427>.
@article{Yao2013,
abstract = {We consider the classical nonlinear fourth-order two-point boundary value problem \[ \{\left\lbrace \begin\{array\}\{ll\} u^\{(4)\}(t)=\lambda h(t)f(t,u(t),u^\{\prime \}(t),u^\{\prime \prime \}(t)),\quad 0<t<1,\\ u(0)=u^\{\prime \}(1)=u^\{\prime \prime \}(0)=u^\{\prime \prime \prime \}(1)=0. \end\{array\}\right.\} \]
In this problem, the nonlinear term $h(t)f(t,u(t),u^\{\prime \}(t),u^\{\prime \prime \}(t))$ contains the first and second derivatives of the unknown function, and the function $h(t)f(t,x,y,z)$ may be singular at $t=0$, $t=1$ and at $x=0$, $y=0$, $z=0$. By introducing suitable height functions and applying the fixed point theorem on the cone, we establish several local existence theorems on positive solutions and obtain the corresponding eigenvalue intervals.},
author = {Yao, Qingliu},
journal = {Applications of Mathematics},
keywords = {nonlinear ordinary differential equation; singular nonlinearity; positive solution; eigenvalue interval; nonlinear ordinary differential equation; singularity; positive solution; eigenvalue interval},
language = {eng},
number = {1},
pages = {93-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem},
url = {http://eudml.org/doc/251427},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Yao, Qingliu
TI - Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 93
EP - 110
AB - We consider the classical nonlinear fourth-order two-point boundary value problem \[ {\left\lbrace \begin{array}{ll} u^{(4)}(t)=\lambda h(t)f(t,u(t),u^{\prime }(t),u^{\prime \prime }(t)),\quad 0<t<1,\\ u(0)=u^{\prime }(1)=u^{\prime \prime }(0)=u^{\prime \prime \prime }(1)=0. \end{array}\right.} \]
In this problem, the nonlinear term $h(t)f(t,u(t),u^{\prime }(t),u^{\prime \prime }(t))$ contains the first and second derivatives of the unknown function, and the function $h(t)f(t,x,y,z)$ may be singular at $t=0$, $t=1$ and at $x=0$, $y=0$, $z=0$. By introducing suitable height functions and applying the fixed point theorem on the cone, we establish several local existence theorems on positive solutions and obtain the corresponding eigenvalue intervals.
LA - eng
KW - nonlinear ordinary differential equation; singular nonlinearity; positive solution; eigenvalue interval; nonlinear ordinary differential equation; singularity; positive solution; eigenvalue interval
UR - http://eudml.org/doc/251427
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1016/S0377-0427(97)00205-7, J. Comput. Appl. Math. 88 (1998), 129-147. (1998) Zbl0902.34017MR1609070DOI10.1016/S0377-0427(97)00205-7
- Agarwal, R. P., O'Regan, D., 10.1006/jdeq.2000.3808, J. Differ. Equations 170 (2001), 142-156. (2001) Zbl0978.34018MR1813103DOI10.1006/jdeq.2000.3808
- Atanackovic, T. M., Stability Theory of Elastic Rods. Series on Stability, Vibration and Control of Systems, Series A, World Scientific Singapore (1997). (1997)
- Bai, Z., Wang, H., 10.1016/S0022-247X(02)00071-9, J. Math. Anal. Appl. 270 (2002), 357-368. (2002) Zbl1006.34023MR1915704DOI10.1016/S0022-247X(02)00071-9
- Bai, Z., 10.1016/j.na.2006.08.009, Nonlinear Anal., Theory Methods Appl. 67 (2007), 1704-1709. (2007) Zbl1122.34010MR2326022DOI10.1016/j.na.2006.08.009
- Dunninger, D. R., 10.4064/ap77-2-3, Ann. Pol. Math. 77 (2001), 161-168. (2001) Zbl0989.34014MR1869312DOI10.4064/ap77-2-3
- Elgindi, M. B. M., Guan, Z., 10.1155/S0161171297000343, Int. J. Math. Math. Sci. 20 (1997), 257-261. (1997) Zbl0913.34020MR1444725DOI10.1155/S0161171297000343
- Feng, H., Ji, D., Ge, W., 10.1016/j.na.2008.07.013, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3561-3566. (2009) Zbl1169.34308MR2502764DOI10.1016/j.na.2008.07.013
- Graef, J. R., Yang, B., 10.1080/00036810008840810, Appl. Anal. 74 (2000), 201-214. (2000) Zbl1031.34025MR1742276DOI10.1080/00036810008840810
- Guo, D., Lakshmikantham, V., Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering, 5, Academic Press Boston (1988). (1988) MR0959889
- Gupta, C. P., 10.1080/00036818808839715, Appl. Anal. 26 (1988), 289-304. (1988) Zbl0611.34015MR0922976DOI10.1080/00036818808839715
- Henderson, J., Wang, H., 10.1006/jmaa.1997.5334, J. Math. Anal. Appl. 208 (1997), 252-259. (1997) Zbl0876.34023MR1440355DOI10.1006/jmaa.1997.5334
- Hewitt, E., Stromberg, K., Real and Abstract Analysis. A Modern Treatment of The Theory of Functions of a Real Variable. 3rd printing, Springer Berlin, Heidelberg, New York (1975). (1975) Zbl0307.28001MR0367121
- Liu, B., 10.1016/S0096-3003(02)00857-3, Appl. Math. Comput. 148 (2004), 407-420. (2004) Zbl1039.34018MR2015382DOI10.1016/S0096-3003(02)00857-3
- Ma, R., Ma, Q., 10.1007/BF02538837, Appl. Math. Mech., Engl. Ed. 16 (1995), 961-969. (1995) Zbl0836.73032MR1365596DOI10.1007/BF02538837
- Marcos, J., Lorca, S., Ubilla, P., 10.1016/j.aml.2007.02.025, Appl. Math. Lett. 21 (2008), 279-286. (2008) Zbl1169.34317MR2433742DOI10.1016/j.aml.2007.02.025
- Meehan, M., O'Regan, D., 10.1216/jiea/1020282208, J. Integral Equations Appl. 12 (2000), 271-280. (2000) Zbl0988.45004MR1810743DOI10.1216/jiea/1020282208
- Staněk, S., 10.1016/j.na.2009.03.043, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4893-4905. (2009) Zbl1192.34027MR2548721DOI10.1016/j.na.2009.03.043
- Wei, Z., 10.1016/S0096-3003(03)00683-0, Appl. Math. Comput. 153 (2004), 865-884. (2004) Zbl1057.34006MR2066157DOI10.1016/S0096-3003(03)00683-0
- Yao, Q., 10.1016/j.na.2007.07.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 1570-1580. (2008) MR2424530DOI10.1016/j.na.2007.07.002
- Yao, Q., 10.1007/s10440-008-9317-0, Acta Appl. Math. 108 (2009), 385-394. (2009) Zbl1188.34013MR2551480DOI10.1007/s10440-008-9317-0
- Yao, Q., 10.1016/j.jmaa.2009.07.043, J. Math. Anal. Appl. 363 (2010), 138-154. (2010) Zbl1191.34031MR2559048DOI10.1016/j.jmaa.2009.07.043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.