Weak regularizability and pole assignment for non-square linear systems
Tetiana Korotka; Jean-Jacques Loiseau; Petr Zagalak
Kybernetika (2012)
- Volume: 48, Issue: 6, page 1065-1088
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKorotka, Tetiana, Loiseau, Jean-Jacques, and Zagalak, Petr. "Weak regularizability and pole assignment for non-square linear systems." Kybernetika 48.6 (2012): 1065-1088. <http://eudml.org/doc/251434>.
@article{Korotka2012,
abstract = {The problem of pole assignment by state feedback in the class of non-square linear systems is considered in the paper. It is shown that the problem is solvable under the assumption of weak regularizability, a newly introduced concept that can be viewed as a generalization of the regularizability of square systems. Necessary conditions of solvability for the problem of pole assignment are established. It is also shown that sufficient conditions can be derived in some special cases. Some conclusions and prospects for further studies are drawn in the last section.},
author = {Korotka, Tetiana, Loiseau, Jean-Jacques, Zagalak, Petr},
journal = {Kybernetika},
keywords = {linear systems; linear state feedback; pole assignment; linear systems; linear state feedback; pole assignment; regularizability of square systems},
language = {eng},
number = {6},
pages = {1065-1088},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Weak regularizability and pole assignment for non-square linear systems},
url = {http://eudml.org/doc/251434},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Korotka, Tetiana
AU - Loiseau, Jean-Jacques
AU - Zagalak, Petr
TI - Weak regularizability and pole assignment for non-square linear systems
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 6
SP - 1065
EP - 1088
AB - The problem of pole assignment by state feedback in the class of non-square linear systems is considered in the paper. It is shown that the problem is solvable under the assumption of weak regularizability, a newly introduced concept that can be viewed as a generalization of the regularizability of square systems. Necessary conditions of solvability for the problem of pole assignment are established. It is also shown that sufficient conditions can be derived in some special cases. Some conclusions and prospects for further studies are drawn in the last section.
LA - eng
KW - linear systems; linear state feedback; pole assignment; linear systems; linear state feedback; pole assignment; regularizability of square systems
UR - http://eudml.org/doc/251434
ER -
References
top- Bacos, R., Cury, J. E. R., Loiseau, J. J., Control of a class of constrained implicit systems., In: Proc. IFAC Symposium on System Structure and Control, Ancona 2010.
- Ishihara, J. Y., Terra, M. H., 10.1109/9.928613, IEEE Trans. Automat. Control 46 (2001), 6, 991-994. Zbl1007.93006MR1836508DOI10.1109/9.928613
- Kaczorek, T., Infinite eigenvalue assignment by an output feedback for singular systems., Internat. J. Appl. Math. Comput. Sci. 14 (2004), 1, 19-23. Zbl1171.93331MR2043575
- Kailath, T., Linear systems., Englewood Cliffs, Prentice Hall, NJ 1980. Zbl0870.93013MR0569473
- Korotka, T., Loiseau, J. J., Zagalak, P., A note on pole assignment in linear singular systems., In: Proc. 11th International Ph.D. Workshop on Systems and Control, Veszprem 2010.
- Kučera, V., Zagalak, P., 10.1016/0005-1098(88)90112-4, Automatica 24 (1988), 5, 653-658. Zbl0661.93033MR0966689DOI10.1016/0005-1098(88)90112-4
- Libeau, L., Sur l'utilisation des divoï des pour la commande des systèmes à événements discrets., Ph.D. Thesis, Ecole Centrale de Nantes 1996.
- Liu, G. P., Patton, R. J., Eigenstructure Assignment for Control System Design., John Wiley and Sons, New York 1998. MR1606139
- Loiseau, J. J., Özçaldiran, K., Malabre, M., Karcanias, N., Feedback canonical forms of singular systems., Kybernetika 27 (1991), 4, 289-305. Zbl0767.93007MR1127906
- Loiseau, J. J., Zagalak, P., 10.1080/00207170802400954, Internat. J. Control 82 (2009), 7, 1179-1192. Zbl1168.93009MR2532197DOI10.1080/00207170802400954
- Özçaldiran, K., Lewis, F. L., 10.1109/9.58561, IEEE Trans. Automat. Control 35 (1990), 10, 1156-1160. Zbl0724.93011MR1073262DOI10.1109/9.58561
- Rosenbrock, R. R., State-space and Multivariable Theory., Nelson, London 1970. Zbl0246.93010
- Vardulakis, A. I. G., Limebeer, D. N. J., Karcanias, N., 10.1080/00207178208922649, Internat. J. Control 35 (1982), 4, 701-725. MR0669973DOI10.1080/00207178208922649
- Zaballa, I., 10.1016/0024-3795(88)90140-1, Lin. Algebra Appl. 101 (1988), 9-31. Zbl0673.93025MR0941293DOI10.1016/0024-3795(88)90140-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.