A Review of the History of Japanese Mathematics

Tsukane Ogawa

Revue d'histoire des mathématiques (2001)

  • Volume: 7, Issue: 1, page 135-153
  • ISSN: 1262-022X

Abstract

top
This review aims to introduce Japanese mathematics to a non-expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages.

How to cite

top

Ogawa, Tsukane. "A Review of the History of Japanese Mathematics." Revue d'histoire des mathématiques 7.1 (2001): 135-153. <http://eudml.org/doc/252078>.

@article{Ogawa2001,
abstract = {This review aims to introduce Japanese mathematics to a non-expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages.},
author = {Ogawa, Tsukane},
journal = {Revue d'histoire des mathématiques},
keywords = {Japan; Sangaku; Enri; computation of $\pi $; historiography of japanese mathematics; sangaku; enri; computation of pi; historiography of Japanese mathematics},
language = {eng},
number = {1},
pages = {135-153},
publisher = {Société mathématique de France},
title = {A Review of the History of Japanese Mathematics},
url = {http://eudml.org/doc/252078},
volume = {7},
year = {2001},
}

TY - JOUR
AU - Ogawa, Tsukane
TI - A Review of the History of Japanese Mathematics
JO - Revue d'histoire des mathématiques
PY - 2001
PB - Société mathématique de France
VL - 7
IS - 1
SP - 135
EP - 153
AB - This review aims to introduce Japanese mathematics to a non-expert and a non-Japanese readership. It briefly characterizes mathematics in Japan, surveys its history, as it developed over the last century, and provides a large (if not exhaustive) bibliography of works in the primary European languages.
LA - eng
KW - Japan; Sangaku; Enri; computation of $\pi $; historiography of japanese mathematics; sangaku; enri; computation of pi; historiography of Japanese mathematics
UR - http://eudml.org/doc/252078
ER -

References

top
  1. [1] Cooke ( Roger) [1997] The History of Mathematics: A Brief Course, New York: Wiley-Interscience, 1997. Zbl1073.01005MR1471204
  2. [2] Fujisawa ( Rikitarou) [1900] Notes on the Mathematics of the Old Japanese School, Compte rendu du 2e Congrès international des mathématiciens, Paris, pp.379–393. JFM32.0002.05
  3. [3] Fukagawa ( Hidetoshi) & Pedoe ( Dan) [1989] Japanese Temple Geometry Problems, Winnipeg: The Charles Babbage Research Center, 1989. MR1044556
  4. [4] Harzer ( Paul) [1905] Die exakten Wissenschaften im alten Japan, Jahresbericht der Deutschen Mathematiker-Vereinigung, 14 (1905), pp.312–339. JFM36.0003.02
  5. [5] Hayashi ( Tsuruichi) [1903–1905]A Brief History of the Japanese Mathematics, Nieuw Archief voor Wiskunde, ser.2, 6 (1905), pp.296–361. JFM35.0004.02
  6. [6] Hayashi ( Tsuruichi) [1905–1907a] A List of Some Dutch Astronomical Works Imported into Japan from Holland, Nieuw Archief voor Wiskunde, ser.2, 7 (1905–1907), pp.42–44. JFM36.0076.04
  7. [7] Hayashi ( Tsuruichi) [1905–1907b] A Brief History of the Japanese mathematics, Nieuw Archief voor Wiskunde, ser.2, 7 (1907), pp.105–163. Continued from [Hayashi 1903–1905]. JFM36.0003.05
  8. [8] Hayashi ( Tsuruichi) [1905–1907c] A List of Dutch Books on Mathematical Sciences, Imported from Holland to Japan before the Restoration in 1868, Nieuw Archief voor Wiskunde, ser. 2, 7 (1905–1907), pp.232–236. JFM37.0038.04
  9. [9] Hayashi ( Tsuruichi) [1906a] On Mr. Mikami’s Essay and Prof. Harzer’s Remark, Jahresbericht der Deutschen Mathematiker-Vereinigung, 15 (1906), p.586. JFM37.0002.05
  10. [10] Hayashi ( Tsuruichi) [1906b] Seki’s Daijutsu-bengi and By|odai-meichi, Proceedings of the Tokyo Mathematico-Physical Society, ser.2, 3 (1906), p.127–141. JFM37.0005.02
  11. [11] Hayashi ( Tsuruichi) [1906c] Seki’s Kaih|o-Honpen, H|ojin-Ensan, and Sandatsu-Kempu, Proceedings of the Tokyo Mathematico-Physical Society, ser.2, 3 (1906), p.183–201. JFM38.0011.03
  12. [12] Hayashi ( Tsuruichi) [1909–1910]The ‘Fukudai’ and Determinants in Japanese Mathematics, Proceedings of the Tokyo Mathematico-Physical Society, ser.2, 5 (1909–1910), pp.254–271. JFM41.0058.03
  13. [13] Hayashi ( Tsuruichi) [1937] Collected Papers on the Old Japanese Mathematics, Fujiwara (M.), ed., 2 vols., Tokyo: Kaiseikan, 1937. 
  14. [14] Hirayama ( Akira) [1936] Malfatti’s Problem and its Extension in the Old Japanese Mathematics, Tôhoku Mathematical Journal, 42 (1936), pp.67–74. Zbl0014.14708
  15. [15] Horiuchi ( Annick) [1994a] Les mathématiques japonaises à l’époque d’Edo, Paris: Vrin, 1994. MR1372262
  16. [16] Horiuchi ( Annick) [1994b] The Tetsujutsu Sankei (1722), an 18th Century Treatise on the Methods of Investigation in Mathematics, in Sasaki (Chi.) et al., eds., The Intersection of History and Mathematics, Science Networks-Historical Studies 15, pp.149–164, Basel: Birkhäuser, 1994. Zbl0840.01009MR1308085
  17. [17] Iyanaga ( Shôkichi) [1995] Évolution des études mathématiques au Japon depuis l’ère Meiji, Historia Scientiarum, ser.2, 4 (1995), pp.181–206. Zbl0829.01031MR1325112
  18. [18] Jochi ( Shigeru) [1993] The Influence of Chinese Mathematical Arts on Seki Kowa, Ph.D. Thesis of the University of London, http://www.nkfu.edu.tw/~jochi. 
  19. [19] Kikuchi ( Dairoku) [1895a] Ajima’s Method of Finding the Length of an Arc of a Circle, Proceedings of the Physico-Mathematical Society of Japan, ser.1, 7 (1895), pp.114–117. JFM27.0035.06
  20. [20] Kikuchi ( Dairoku) [1895b] On the Method of the Old Japanese School for Finding the Area of a Circle, Proceedings of the Physico-Mathematical Society of Japan, ser.1, 7 (1895), pp.24–26. JFM26.0055.02
  21. [21] Kikuchi ( Dairoku) [1895c] A Series for π 2 Obtained by the Old Japanese Mathematicians, Proceedings of the Physico-Mathematical Society of Japan, ser.1, 7 (1895), pp.107–110. 
  22. [22] Kikuchi ( Dairoku) [1895d] Various Series for π Obtained by the Old Japanese Mathematicians, Proceedings of the Physico-Mathematical Society of Japan, ser.1, 7 (1895), pp.47–53. JFM26.0056.01
  23. [23] Kikuchi ( Dairoku) [1896] Seki’s Method of Finding the Length of an Arc of a Circle, Proceedings of the Physico-Mathematical Society of Japan, ser.1, 8 (1896), pp.179–198. JFM31.0046.05
  24. [24] Kobayashi ( Tatsuhiko) [1995] The Yuzhi Lixiang Kaocheng and Traditional Japanese Mathematicians (Wasanka): – Especially Concerning the Acceptance of its Particulars –, in Hashimoto et al., eds., East Asian Science: Tradition and Beyond: Papers from the Seventh International Conference on the History of Science in East Asia Held in Kyoto, 2–7 August 1993, Osaka: Kansai University, 1995, pp.513–519. MR1735595
  25. [25] Martzloff ( Jean-Claude) [1990] A Survey of Japanese Publications on the History of Japanese Traditional Mathematics (Wasan) from the Last 30 Years, Historia Mathematica, 17 (1990), pp.366–373. Zbl0732.01007MR1085598
  26. [26] Michiwaki ( Yoshimasa) [1980] Japanische Mathematik unter dem Gesichtspunkt der Berechnungstechnik: Henkei Jutsu, Sudhoffs Archiv, 64 (1980), pp.226–233. Zbl1170.01312MR592394
  27. [27] Michiwaki ( Yoshimasa) [1990] On the Resemblance of the Indian, Chinese and Japanese Mathematics, Arhat Vacana, 2-2 (1990), pp.11–15. 
  28. [28] Michiwaki ( Yoshimasa) & Kobayashi ( Tatsuhiko) [1981] On the Resemblance of Problems of ‘L|ıl|avati’, ‘Chiu-Chang Suan-Shu’ and Wasan, Fuji Ronso, 32-1 (1987), pp.93–108. 
  29. [29] Michiwaki ( Yoshimasa), Oyama ( Makoto) & Hamada ( Toshio) [1975] An Invariant Relation in Chains of Tangent Circles, Mathematics Magazine, 48-2 (1975), pp.80–87. Zbl0304.50007MR362011
  30. [30] Mikami ( Yoshio) [1905] A Chinese Theorem on Geometry, Archiv der Mathematik und Physik, 9 (1905), pp.308–310. JFM36.0542.02
  31. [31] Mikami ( Yoshio) [1906] On Reading P.Harzer’s Paper on the Mathematics in Japan, Jahresbericht der Deutschen Mathematiker-Vereinigung, 15 (1906), pp.253–262. Zbl37.0002.03JFM37.0002.03
  32. [32] Mikami ( Yoshio) [1907] Zur Frage abendländischer Einflüsse auf die japanische Mathematik am Ende des siebzehnten Jahrhunderts, Bibliotheca Mathematica, 3-7 (1907), pp.364–366. JFM37.0005.03
  33. [33] Mikami ( Yoshio) [1907–1908] A Question on Seki’s Invention of the Circle-Principle, Proceedings of the Tokyo Mathematico-Physical Society, ser.2, 4 (1907–1908), p.442–446. JFM39.0069.02
  34. [34] Mikami ( Yoshio) [1908] Seki and Shibukawa, Jahresbericht der Deutschen Mathematiker-Vereinigung, 17 (1908), pp.187–196. 
  35. [35] Mikami ( Yoshio) [1909] A Remark on the Chinese Mathematics in Cantor’s Geschichte der Mathematik, Archiv der Mathematik und Physik, ser.3, 15 (1909), pp.68–70. JFM40.0002.01
  36. [36] Mikami ( Yoshio) [1909/1911a] On the Dutch Art of Surveying as Studied in Japan, Nieuw Archief voor Wiskunde, ser.2, 9 (1909/1911), pp.301–304. JFM41.0073.04
  37. [37] Mikami ( Yoshio) [1909/1911b] Hatono S|oha and the Mathematics of Seki, Nieuw Archief voor Wiskunde, ser.2, 9 (1909/1911), pp.158–171. JFM41.0008.02
  38. [38] Mikami ( Yoshio) [1909/1911c] On a Japanese Astronomical Treatise Based on Dutch Works, Nieuw Archief voor Wiskunde, ser.2, 9 (1909/1911), pp.231–234. JFM41.0076.01
  39. [39] Mikami ( Yoshio) [1909/1911d] Remarks on T.Hayashi’s ‘Brief History of Japanese Mathematics’, Nieuw Archief voor Wiskunde, ser.2, 9 (1909/1911), pp.373–386. JFM42.0003.03
  40. [40] Mikami ( Yoshio) [1909/1911e] Some Additions to my Paper ‘On the Dutch Art of Surveying as Studied in Japan’, Nieuw Archief voor Wiskunde, ser.2, 9 (1909/1911), pp.370–372. Zbl42.0069.03JFM42.0069.03
  41. [41] Mikami ( Yoshio) [1909–1910a] On the Discovery of the Circle-Principle, Proceedings of the Physico-Mathematical Society of Japan, ser.2, 5 (1909–1910), pp.372–392. JFM41.0065.03
  42. [42] Mikami ( Yoshio) [1909–1910b] A Remark on T. Hayashi’s Article on the Fukudai, Proceedings of the Physico-Mathematical Society of Japan, ser.2, 5 (1909–1910), pp.392–394. JFM41.0058.04
  43. [43] Mikami ( Yoshio) [1910a] The Circle-Squaring of the Chinese, Bibliotheca Mathematica, 3-10 (1910), pp.193–200. JFM40.0065.02
  44. [44] Mikami ( Yoshio) [1910b] Mathematical Papers from the Far East, Leipzig, Teubner 1910. JFM41.0039.01
  45. [45] Mikami ( Yoshio) [1911a] Arithmetic with Fractions in Old China, Archiv for Mathematik og Naturvidenskab, 32-3 (1911), pp.1–10. 
  46. [46] Mikami ( Yoshio) [1911b] Further Remarks on the Chinese Mathematics in Cantor’s Geschichte der Mathematik, Archiv der Mathematik und Physik, ser.3, 18 (1911), pp.209–219. JFM42.0054.03
  47. [47] Mikami ( Yoshio) [1911c] The Influence of Abaci on the Chinese and Japanese Mathematics, Jahresbericht der Deutschen Mathematiker-Vereinigung, 20 (1911), pp.380–393. Zbl42.0054.02JFM42.0054.02
  48. [48] Mikami ( Yoshio) [1911d] Remarks on Dr. Caurs’s View Concerning Geometry. The Monist 21 (1911), pp.126–131. JFM42.0506.10
  49. [49] Mikami ( Yoshio) [1911e] The Teaching of Mathematics in Japan, The American Mathematical Monthly, 18 (1911), p.123–134. MR1517563
  50. [50] Mikami ( Yoshio) [1911–1912] On the Kwanrui-jutsu or Recurring Method as Given by Kemmochi Shôkô, Tôhoku Mathematical Journal, 1 (1911–1912), pp.98–105. Zbl43.0071.01JFM43.0071.01
  51. [51] Mikami ( Yoshio) [1912a] On Ajima Chokuyen’s Solution of the Indeterminate Equation x 1 2 + x 2 2 + x 3 2 + + x n 2 = y 2 , Archiv for Mathematik og Naturvindenskab, 33-2 (1912), pp.1–8. 
  52. [52] Mikami ( Yoshio) [1912b] The Rectification of the Ellipse by Japanese Mathematicians. Bibliotheca Mathematica, 3-12 (1912), pp.225–237. JFM42.0063.03
  53. [53] Mikami ( Yoshio) [1912/1913a] On an Astronomical Treatise Composed by a Portuguese in Japan. Nieuw Archief voor Wiskunde, ser.2, 10 (1912/1913), pp.61–70. JFM43.0080.02
  54. [54] Mikami ( Yoshio) [1912/1913b] A Japanese Buddhist’s View of the European Astronomy. Nieuw Archief voor Wiskunde, ser.2, 10 (1912/1913), pp.233–243. JFM43.0080.01
  55. [55] Mikami ( Yoshio) [1912/1913c] On a Japanese Manuscript of the 17th Century Concerning the European Astronomy, Nieuw Archief voor Wiskunde, ser.2, 10 (1912/1913), pp.71–74. JFM43.0080.03
  56. [56] Mikami ( Yoshio) [1913a] The Circle-Measurement of the Takuma School, Proceedings of the Physico-Mathematical Society of Japan, ser.2, 7 (1913), pp.46–56. JFM44.0051.01
  57. [57] Mikami ( Yoshio) [1913b] On the Formula for an Area of a Circle in the ‘Kwatsuy|o-Samp|o’ and Allied Subjects, Proceedings of the Physico-Mathematical Society of Japan, ser.2, 7 (1913), pp.157–170. JFM44.0051.02
  58. [58] Mikami ( Yoshio) [1913c] Notes on the Native Japanese Mathematics, Archiv der Mathematik und Physik, ser.3, 20 (1913), pp.1–10. JFM43.0006.01
  59. [59] Mikami ( Yoshio) [1913d] The Parabola and Hyperbola in Japanese Mathematics, Tôhoku Mathematical Journal, 3 (1913), pp.29–37. JFM44.0052.01
  60. [60] Mikami ( Yoshio) [1914a] On Miyai Antai’s Solution of an Equation by Successive Approximations, Tôhoku Mathematical Journal, 5 (1914), pp.176–179. Zbl45.0173.05JFM45.0173.05
  61. [61] Mikami ( Yoshio) [1914b] Notes on the Native Japanese Mathematics, Archiv der Mathematik und Physik, ser.3, 22 (1914), pp.183–199. Continued from [1913 c]. JFM45.0003.03
  62. [62] Mikami ( Yoshio) [1914/1915a] On Mayeno’s Description of the Parallelogram of Forces, Nieuw Archief voor Wiskunde, ser.2, 11 (1914/1915), pp.76–78. JFM45.0084.04
  63. [63] Mikami ( Yoshio) [1914/1915b] On Shizuki’s Translation of Keill’s Astronomical Treatise, Nieuw Archief voor Wiskunde, ser.2, 11 (1914/1915), pp.1–19. JFM45.0090.02
  64. [64] Mikami ( Yoshio) [1914–1919] On the Japanese Theory of Determinants, Isis, 2 (1914–1919), pp.9–36. 
  65. [65] Mikami ( Yoshio) [1915] On a Problem of Japanese Mathematics, Tôhoku Mathematical Journal, 7 (1915), pp.71–73. 
  66. [66] Mikami ( Yoshio) [1928] The Ch’ou-Jen Chuan of Yüan Yüan, Isis, 11 (1928), pp.123–126. 
  67. [67] Mikami ( Yoshio) [1930] On the Establishment of the Yenri Theory in the Old Japanese Mathematics, Proceedings of the Physico-Mathematical Society of Japan, ser.3, 12 (1930), pp.43–63. Zbl56.0809.02JFM56.0809.02
  68. [68] Mikami ( Yoshio) [1933] Mamoru Mimori – A Master Teacher of Mathematics in Japan, Scripta mathematica, 1 (1933), pp.254–255. JFM59.0036.02
  69. [69] Mikami ( Yoshio) [1949] Mamoru Mimori, A Japanese Master of Mathematics, Archives internationales d’histoire des sciences, Nouvelle série d’Archeion, 28 (1949), pp.1140–1143. Zbl0033.24204
  70. [70] Mikami ( Yoshio) [1974] The Development of Mathematics in China and Japan, 2nd ed., New York: Chelsea, 1974; 1st ed., Leipzig: Teubner, 1913. Zbl0114.24202
  71. [71] Nakamura ( Kunimitsu) [1994] On the Sprout and Setback of the Concept of Mathematical ‘Proof’ in the Edo Period in Japan: Regarding the Method of Calculating Number π , Historia Scientiarum, ser.2, 3 (1994), pp.185–199. Zbl0799.01005MR1283686
  72. [72] Ogawa ( Tsukane) [1995] A Brief Note on the Book ‘Seki’s Hatsubi Sanpou—Translation and Annotation’ by Ogawa Tsukane (Ohzora-sha, 1994), The Journal of Yokkaichi University, 8-1 (1995), pp.153–166. 
  73. [73] Ogawa ( Tsukane) [1996] A Process of Establishment of Pre-modern Japanese Mathematics, Historia Scientiarum, ser.2, 5 (1996), pp.255–262. Zbl0861.01005MR1393070
  74. [74] Ogura ( Kinnosuke) [1993] Wasan, Japanese Mathematics, translated by N.Ise. Tokyo: Kodansha, 1913; original Japanese edition, Tokyo: Iwanami, 1940. 
  75. [75] Rothman ( Tony) [1998] Japanese Temple Geometry, Scientific American, may 1998, pp.85–91, http://www. sciam.com/1998/0598issue/0598rothman.html. 
  76. [76] Sasaki ( Chikara) [1994] Asian Mathematics from Traditional to Modern, Historia Scientiarum, ser.2, 4 (1994), pp.69–77. Zbl0818.01001MR1325307
  77. [77] Sato ( Ken’ichi) [1995] Reevaluation of Tengenjutsu or Tianyuanshu: In the Context of Comparison between China and Japan, Historia Scientiarum, ser.2, 5 (1995), pp.57–67. Zbl0838.01006MR1349736
  78. [78] Sato ( Ken’ichi) [1998] On the Theory of Regular Polygons in Traditional Japanese Mathematics: Reconstruction of the Process for the Calculation of the Degree of Kaihoshiki Appearing in the Taisei Sankei by Seki and Takebe Brothers, Historia Scientiarum, ser.2, 8 (1998), pp.71–85. Zbl0972.01008MR1667210
  79. [79] Shimodaira ( Kazuo) [1966] Activities of Japanese Historians of Mathematics during the last Decade, Japanese Studies in the History of Science, 4 (1966), pp.20–27. Zbl0208.28702
  80. [80] Shimodaira ( Kazuo) [1977] Recreative Problems on ‘Jingoki’, Japanese Studies in the History of Science 16 (1977), pp.95–103. 
  81. [81] Shimodaira ( Kazuo) [1981] On Idai of Jingoki, Historia Scientiarum, 21 (1981), pp.87–101. MR652166
  82. [82] Shinomiya ( Asaji) & Hayashi ( Tsuruichi) [1917] The Problems Dedicated by Gokai and his Disciples, to Seki on the Occasion of the One-hundred-fiftieth Anniversary of the Latter’s Death, The Tôhoku Mathematical Journal, 12 (1917), pp.1–12. Zbl46.0048.02JFM46.0048.02
  83. [83] Smith ( David E.) [1911–1912] How to Native Japanese Mathematics is Considered in the West, The Tôhoku Mathematical Journal, 1 (1911–1912), pp.1–7. Zbl42.0003.04JFM42.0003.04
  84. [84] Smith ( Davic E.) & Mikami ( Yoshio) [1914] A History of Japanese Mathematics, Chicago: Open Court, 1914. Zbl44.0038.04JFM44.0038.04
  85. [85] Sudo ( Toshiichi) [1954] A Study of the History of Mathematics in Ryu-Kyu (I), Scientific Papers of the College of General Education, University of Tokyo, 4 (1954), pp.165–177. Zbl0067.24504MR75855
  86. [86] Sudo ( Toshiichi) [1955] A Study of the History of Mathematics in Ryu-Kyu (II), Scientific Papers of the College of General Education, University of Tokyo, 5 (1955), pp.67–82. Zbl0067.24504MR75856
  87. [87] Sudo ( Toshiichi) [1955] A Study of the History of Mathematics in Ryu-Kyu (III), Scientific Papers of the College of General Education, University of Tokyo, 5 (1955), pp.179–189. Zbl0067.24504MR78272
  88. [88] Xu ( Zelin) [1999] Takebe Katahiro and Romberg Algorithm, Historia Scientiarum, 9-2 (1999), pp.155–164. Zbl1185.01017MR1762169
  89. [89] Yanagihara ( Kitizi) [1912] A Problem in Geometry of the Triangle, The Tôhoku Mathematical Journal, 2 (1912), pp.32–36. JFM43.0588.03
  90. [90] Yanagihara ( Kitizi) [1913] On some Geometrical Propositions in Wasan, the Japanese Native Mathematics, The Tôhoku Mathematical Journal, 3 (1913), pp.87–95. Zbl44.0052.02JFM44.0052.02
  91. [91] Yanagihara ( Kitizi) [1914–1915] On the Pythagorean Equation x 2 + y 2 = z 2 in Japanese Mathematics, The Tôhoku Mathematical Journal, 6 (1914–1915), pp.120–123. Zbl45.0097.05JFM45.1246.01
  92. [92] Yanagihara ( Kitizi) [1915] Mechanical Methods of Describing an Ellipse in Japanese Native Mathematics, The Tôhoku Mathematical Journal, 7 (1915), pp.74–77. 
  93. [93] Yanagihara ( Kitizi) [1918] On the Dajutu or the Arithmetic Series of Higher Orders as Studied by Wasanists, The Tôhoku Mathematical Journal, 14 (1918), pp.305–324. Zbl46.0048.03JFM46.0048.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.