The Area and the Side I Added: Some old Babylonian Geometry

Duncan J. Melville

Revue d'histoire des mathématiques (2005)

  • Volume: 11, Issue: 1, page 7-22
  • ISSN: 1262-022X

Abstract

top
There was a standard procedure in Mesopotamia for solving quadratic problems involving lengths and areas of squares. In this paper, we show, by means of an example from Susa, how area constants were used to reduce problems involving other geometrical figures to the standard form.

How to cite

top

J. Melville, Duncan. "The Area and the Side I Added: Some old Babylonian Geometry." Revue d'histoire des mathématiques 11.1 (2005): 7-22. <http://eudml.org/doc/252122>.

@article{J2005,
abstract = {There was a standard procedure in Mesopotamia for solving quadratic problems involving lengths and areas of squares. In this paper, we show, by means of an example from Susa, how area constants were used to reduce problems involving other geometrical figures to the standard form.},
author = {J. Melville, Duncan},
journal = {Revue d'histoire des mathématiques},
keywords = {old Babylonian; Susa; area constants; apsamikkum},
language = {eng},
number = {1},
pages = {7-22},
publisher = {Société mathématique de France},
title = {The Area and the Side I Added: Some old Babylonian Geometry},
url = {http://eudml.org/doc/252122},
volume = {11},
year = {2005},
}

TY - JOUR
AU - J. Melville, Duncan
TI - The Area and the Side I Added: Some old Babylonian Geometry
JO - Revue d'histoire des mathématiques
PY - 2005
PB - Société mathématique de France
VL - 11
IS - 1
SP - 7
EP - 22
AB - There was a standard procedure in Mesopotamia for solving quadratic problems involving lengths and areas of squares. In this paper, we show, by means of an example from Susa, how area constants were used to reduce problems involving other geometrical figures to the standard form.
LA - eng
KW - old Babylonian; Susa; area constants; apsamikkum
UR - http://eudml.org/doc/252122
ER -

References

top
  1. [1] E. M. Bruins & M. Rutten, Textes mathématiques de Suse, Mémoires de la Délégation en Perse 34, 1961 Zbl0101.00403MR124170
  2. [2] D. H. Fowler & E. Robson, “Square root approximations in Old Babylonian mathematics: YBC7289 in context”, Historia Mathematica 25 (1998), p. 366-378 Zbl0917.01005MR1662496
  3. [3] J. Friberg, “Methods and traditions of Babylonian mathematics II: an Old Babylonian catalogue text with equations for squares and circles”, J. Cuneiform Studies 33 (1981), p. 57-64 Zbl0472.01002MR677410
  4. [4] J. Friberg, “Seed and Reeds continued: Another metro-mathematical topic text from Late Babylonian Uruk”, Baghdader Mitteilungen 28 (1997), p. 251-365 
  5. [5] J. Høyrup, The Old Babylonian Square texts. BM13901 and YBC4714: Retranslation and analysis, in: Changing Views on Ancient Near Eastern Mathematics (JensHøyrupPeterDamerow ed.), Dietrich Reimer Verlag, Berlin, 2001, p. 155-218 
  6. [6] J. Høyrup, Lengths, Widths, Surfaces: A portrait of Old Babylonian Algebra and its Kin, Springer, 2002 Zbl0999.01001MR1873291
  7. [7] A. Imhausen, The algorithmic structure of the Egyptian mathematical problem texts, in: Under One Sky: Astronomy and Mathematics in the Ancient Near East (JohnSteeleAnetteImhausen ed.), Ugarit-Verlag, Münster, 2002, p. 147-166 Zbl1076.01003
  8. [8] A. Imhausen, Ägyptische Algorithmen : eine Untersuchung zu den mittelägyptischen mathematischen Aufgabentexten, Harrassowitz, 2003 Zbl1022.01001MR1979173
  9. [9] D. E. Knuth, “Ancient Babylonian algorithms”, Communications for the Association of Computing Machinery 15 (1972), p. 671-677 Zbl0245.68010MR392315
  10. [10] K. Muroi, “Quadratic equations in the Susa mathematical text no. 21”, SCIAMVS 1 (2000), p. 3-10 Zbl0966.01007MR1802618
  11. [11] K. Muroi, “Expressions of multiplication in Babylonian mathematics”, Historia Sci. (2) 12 (2002), p. 115-120 Zbl1185.01008MR2049587
  12. [12] K. Muroi, “Extraction of square roots in Babylonian mathematics”, Historia Sci. (2) 9 (1999), p. 127-133 Zbl1185.01006MR1762167
  13. [13] O. Neugebauer, Mathematische Keilschrifttexte, I–III, Springer, 1935/37 Zbl0015.14703JFM61.0008.05
  14. [14] O. Neugebauer & A. Sachs, Mathematical Cuneiform Texts, American Oriental Series 29, American Oriental Society, 1945, reprinted in 1986 Zbl0060.00401MR16320
  15. [15] J. Ritter, Babylon -1800, in: A History of Scientific Thought (MichelSerres ed.), Blackwell, Oxford, 1995, p. 17-43 
  16. [16] J. Ritter, Measure for measure: Mathematics in Egypt and Mesopotamia, in: A History of Scientific Thought (MichelSerres ed.), Blackwell, Oxford, 1995, p. 44-72 
  17. [17] J. Ritter, Reading Strasbourg 368: A Thrice-Told Tale, 1998 Zbl1145.01301
  18. [18] E. Robson, “Three Old Babylonian methods for dealing with ‘Pythagorean’ triangles”, J. Cuneiform Studies 49 (1997), p. 51-72 
  19. [19] E. Robson, Mesopotamian Mathematics, 2100–1600 BC. Technical Constants in Bureaucracy and Education, Oxford Editions of Cuneiform Texts 14, Clarendon Press, 1999 Zbl0963.01001MR1735671
  20. [20] F. Thureau-Dangin, “L’équation du deuxième degré dans la mathématique babylonienne d’après une tablette inédite du British Museum”, Revue d’Assyriologie 33 (1936), p. 27-48 Zbl62.0008.02JFM62.0008.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.