Catalan’s conjecture
Séminaire Bourbaki (2002-2003)
- Volume: 45, page 1-26
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topBilu, Yuri F.. "Catalan’s conjecture." Séminaire Bourbaki 45 (2002-2003): 1-26. <http://eudml.org/doc/252135>.
@article{Bilu2002-2003,
abstract = {The subject of the talk is the recent work of Mihăilescu, who proved that the equation $\{x^p-y^q=1\}$ has no solutions in non-zero integers $x,y$ and odd primes $p,q$. Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to $\{x^u-y^v =1\}$ in integers $\{x,y >0\}$ and $\{u,v>1\}$ is $\{3^2-2^3 = 1\}$.
Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute effective constant.},
author = {Bilu, Yuri F.},
journal = {Séminaire Bourbaki},
keywords = {unités cyclotomiques; paires de Wieferich},
language = {eng},
pages = {1-26},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Catalan’s conjecture},
url = {http://eudml.org/doc/252135},
volume = {45},
year = {2002-2003},
}
TY - JOUR
AU - Bilu, Yuri F.
TI - Catalan’s conjecture
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 1
EP - 26
AB - The subject of the talk is the recent work of Mihăilescu, who proved that the equation ${x^p-y^q=1}$ has no solutions in non-zero integers $x,y$ and odd primes $p,q$. Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to ${x^u-y^v =1}$ in integers ${x,y >0}$ and ${u,v>1}$ is ${3^2-2^3 = 1}$.
Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute effective constant.
LA - eng
KW - unités cyclotomiques; paires de Wieferich
UR - http://eudml.org/doc/252135
ER -
References
top- [1] M.F. Atiyah & I.G. Macdonald – Introduction to Commutative Algebra, Addison-Wesley, 1969. MR242802
- [2] A. Baker – “Linear forms in the logarithms of algebraic numbers I”, Mathematika13 (1966), p. 204–216. Zbl0161.05201MR258756
- [3] —, “Linear forms in the logarithms of algebraic numbers II”, Mathematika14 (1967), p. 102–107. Zbl0161.05202
- [4] —, “Linear forms in the logarithms of algebraic numbers III”, Mathematika14 (1967), p. 220–224.
- [5] —, “Linear forms in the logarithms of algebraic numbers IV”, Mathematika15 (1968), p. 204–216. Zbl0169.37802MR258756
- [6] —, “Bounds for solutions of hyperelliptic equations”, Math. Proc. Cambridge Philos. Soc.65 (1969), p. 439–444. Zbl0174.33803MR234912
- [7] A. Baker & G. Wüstholz – “Logarithmic forms and group varieties”, J. reine angew. Math. 442 (1993), p. 19–62. Zbl0788.11026MR1234835
- [8] C.D. Bennett, J. Blass, A.M.W. Glass, D.B. Meronk & R.P. Steiner – “Linear forms in the logarithms of three positive rational numbers”, J. Théor. Nombres Bordeaux9 (1997), p. 97–136. Zbl0905.11032MR1469664
- [9] Y.F. Bilu – “Catalan without logarithmic forms”, J. Théor. Nombres Bordeaux, to appear. Zbl1080.11030
- [10] J. Blass, A.M.W. Glass & T.W. O’Neil – “Catalan’s conjecture and linear forms in logarithms”, Ulam Quart., accepted, but never appeared in print.
- [11] Y. Bugeaud & G. Hanrot – “Un nouveau critère pour l’équation de Catalan”, Mathematika47 (2000), p. 63–73. Zbl1008.11011MR1924488
- [12] J.W.S. Cassels – “On the equation . II”, Math. Proc. Cambridge Philos. Soc.56 (1960), p. 97–103. Zbl0094.25702MR1219908
- [13] E. Catalan – “Note extraite d’une lettre adressée à l’éditeur”, J. reine angew. Math. 27 (1844), p. 192.
- [14] A.O. Gelfond – Transcendental and Algebraic Numbers, Moscow, 1952, (Russian); English transl.: New York, Dover, 1960. Zbl0090.26103MR111736
- [15] S. Hyyrö – “Über das Catalan’sche Problem”, Ann. Univ. Turku. Ser. A I79 (1964), p. 3–10. Zbl0127.01904MR179127
- [16] K. Inkeri – “On Catalan’s problem”, Acta Arith.9 (1964), p. 285–290. Zbl0127.27102MR168518
- [17] —, “On Catalan’s conjecture”, J. Number Theory34 (1990), p. 142–152. Zbl0699.10029
- [18] C. Ko – “On the diophantine equation , ”, Sci. Sinica14 (1965), p. 457–460. Zbl0163.04004
- [19] M. Langevin – “Quelques applications de nouveaux résultats de Van der Poorten”, in Sém. Delange-Pisot-Poitou (1975/1976), vol. 2, Paris, 1977. Zbl0354.10008
- [20] M. Laurent, M. Mignotte & Y. Nesterenko – “Formes linéaires en deux logarithmes et déterminants d’interpolation”, J. Number Theory55 (1995), p. 285–321. Zbl0843.11036MR1366574
- [21] V.A. Lebesgue – “Sur l’impossibilité en nombres entiers de l’équation ”, Nouv. Ann. Math. 9 (1850), p. 178–181.
- [22] E. Matveev – “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers I”, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), p. 81–136, (Russian); English transl.: Izv. Math., 62 (1998), p. 723-772. Zbl0923.11107MR1660150
- [23] —, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II”, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), p. 125–180, (Russian); English transl.: Izv. Math., 64 (2000), p. 125–180. Zbl1013.11043MR1817252
- [24] T. Metsänkylä – “Catalan’s equation with a quadratic exponent”, C. R. Math. Rep. Acad. Sci. Canada23 (2001), p. 28–32. Zbl1031.11017
- [25] M. Mignotte – “Un critère élémentaire pour l’équation de Catalan”, C. R. Math. Rep. Acad. Sci. Canada15 (1993), p. 199–200. Zbl0802.11010MR1250706
- [26] —, “Catalan’s equation just before 2000”, in Number theory (Turku, 1999), de Gruyter, Berlin, 2001, p. 247–254. Zbl1065.11019MR1822013
- [27] M. Mignotte & Y. Roy – “Catalan’s equation has no new solutions with either exponent less than ”, Experimental Math.4 (1995), p. 259–268. Zbl0857.11012MR1387692
- [28] —, “Minorations pour l’équation de Catalan”, C. R. Acad. Sci. Paris Sér. I Math.324 (1997), p. 377–380. Zbl0887.11018MR1440951
- [29] P. Mihăilescu – “A class number free criterion for Catalan’s conjecture”, J. Number Theory99 (2003), p. 225–231. Zbl1049.11036
- [30] —, “Primary cyclotomic units and a proof of Catalan’s conjecture”, J. reine angew. Math., to appear. Zbl1067.11017MR2076124
- [31] —, “On the class group of cyclotomic extensions in the presence of a solution to Catalan’s equation”, a manuscript. Zbl1104.11049
- [32] T.W. O’Neil – “Improved upper bounds on the exponents in Catalan’s equation”, a manuscript, 1995.
- [33] J.-C. Puchta – “On a criterion for Catalan’s conjecture”, Ramanujan J.5 (2001), p. 405–407. Zbl0994.11012MR1891421
- [34] P. Ribenboim – Catalan’s Conjecture, Academic Press, Boston, 1994. Zbl0824.11010MR1259738
- [35] W. Schwarz – “A note on Catalan’s equation”, Acta Arith.72 (1995), p. 277–279. Zbl0837.11014MR1347490
- [36] F. Thaine – “On the ideal class groups of real abelian number fields”, Ann. of Math.128 (1988), p. 1–18. Zbl0665.12003MR951505
- [37] R. Tijdeman – “On the equation of Catalan”, Acta Arith.29 (1976), p. 197–209. Zbl0286.10013MR404137
- [38] M. Waldschmidt – “Minorations de combinaisons linéaires de logarithmes de nombres algébriques”, Canad. J. Math.45 (1993), p. 176–224. Zbl0774.11036MR1200327
- [39] L. Washington – Introduction to cyclotomic fields, 2nd ’ed., Graduate Texts in Math., vol. 83, Springer, New York, 1997. Zbl0966.11047MR1421575
- [40] G. Wüstholz (’ed.) – A Panorama of Number Theory or The View from Baker’s Garden, Cambridge University Press, 2002. Zbl0997.00017MR1975726
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.