Catalan’s conjecture

Yuri F. Bilu

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 1-26
  • ISSN: 0303-1179

Abstract

top
The subject of the talk is the recent work of Mihăilescu, who proved that the equation x p - y q = 1 has no solutions in non-zero integers x , y and odd primes p , q . Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to x u - y v = 1 in integers x , y > 0 and u , v > 1 is 3 2 - 2 3 = 1 . Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute effective constant.

How to cite

top

Bilu, Yuri F.. "Catalan’s conjecture." Séminaire Bourbaki 45 (2002-2003): 1-26. <http://eudml.org/doc/252135>.

@article{Bilu2002-2003,
abstract = {The subject of the talk is the recent work of Mihăilescu, who proved that the equation $\{x^p-y^q=1\}$ has no solutions in non-zero integers $x,y$ and odd primes $p,q$. Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to $\{x^u-y^v =1\}$ in integers $\{x,y &gt;0\}$ and $\{u,v&gt;1\}$ is $\{3^2-2^3 = 1\}$. Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute effective constant.},
author = {Bilu, Yuri F.},
journal = {Séminaire Bourbaki},
keywords = {unités cyclotomiques; paires de Wieferich},
language = {eng},
pages = {1-26},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Catalan’s conjecture},
url = {http://eudml.org/doc/252135},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Bilu, Yuri F.
TI - Catalan’s conjecture
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 1
EP - 26
AB - The subject of the talk is the recent work of Mihăilescu, who proved that the equation ${x^p-y^q=1}$ has no solutions in non-zero integers $x,y$ and odd primes $p,q$. Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to ${x^u-y^v =1}$ in integers ${x,y &gt;0}$ and ${u,v&gt;1}$ is ${3^2-2^3 = 1}$. Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute effective constant.
LA - eng
KW - unités cyclotomiques; paires de Wieferich
UR - http://eudml.org/doc/252135
ER -

References

top
  1. [1] M.F. Atiyah & I.G. Macdonald – Introduction to Commutative Algebra, Addison-Wesley, 1969. MR242802
  2. [2] A. Baker – “Linear forms in the logarithms of algebraic numbers I”, Mathematika13 (1966), p. 204–216. Zbl0161.05201MR258756
  3. [3] —, “Linear forms in the logarithms of algebraic numbers II”, Mathematika14 (1967), p. 102–107. Zbl0161.05202
  4. [4] —, “Linear forms in the logarithms of algebraic numbers III”, Mathematika14 (1967), p. 220–224. 
  5. [5] —, “Linear forms in the logarithms of algebraic numbers IV”, Mathematika15 (1968), p. 204–216. Zbl0169.37802MR258756
  6. [6] —, “Bounds for solutions of hyperelliptic equations”, Math. Proc. Cambridge Philos. Soc.65 (1969), p. 439–444. Zbl0174.33803MR234912
  7. [7] A. Baker & G. Wüstholz – “Logarithmic forms and group varieties”, J. reine angew. Math. 442 (1993), p. 19–62. Zbl0788.11026MR1234835
  8. [8] C.D. Bennett, J. Blass, A.M.W. Glass, D.B. Meronk & R.P. Steiner – “Linear forms in the logarithms of three positive rational numbers”, J. Théor. Nombres Bordeaux9 (1997), p. 97–136. Zbl0905.11032MR1469664
  9. [9] Y.F. Bilu – “Catalan without logarithmic forms”, J. Théor. Nombres Bordeaux, to appear. Zbl1080.11030
  10. [10] J. Blass, A.M.W. Glass & T.W. O’Neil – “Catalan’s conjecture and linear forms in logarithms”, Ulam Quart., accepted, but never appeared in print. 
  11. [11] Y. Bugeaud & G. Hanrot – “Un nouveau critère pour l’équation de Catalan”, Mathematika47 (2000), p. 63–73. Zbl1008.11011MR1924488
  12. [12] J.W.S. Cassels – “On the equation a x - b y = 1 . II”, Math. Proc. Cambridge Philos. Soc.56 (1960), p. 97–103. Zbl0094.25702MR1219908
  13. [13] E. Catalan – “Note extraite d’une lettre adressée à l’éditeur”, J. reine angew. Math. 27 (1844), p. 192. 
  14. [14] A.O. Gelfond – Transcendental and Algebraic Numbers, Moscow, 1952, (Russian); English transl.: New York, Dover, 1960. Zbl0090.26103MR111736
  15. [15] S. Hyyrö – “Über das Catalan’sche Problem”, Ann. Univ. Turku. Ser. A I79 (1964), p. 3–10. Zbl0127.01904MR179127
  16. [16] K. Inkeri – “On Catalan’s problem”, Acta Arith.9 (1964), p. 285–290. Zbl0127.27102MR168518
  17. [17] —, “On Catalan’s conjecture”, J. Number Theory34 (1990), p. 142–152. Zbl0699.10029
  18. [18] C. Ko – “On the diophantine equation x 2 = y n + 1 , x y 0 ”, Sci. Sinica14 (1965), p. 457–460. Zbl0163.04004
  19. [19] M. Langevin – “Quelques applications de nouveaux résultats de Van der Poorten”, in Sém. Delange-Pisot-Poitou (1975/1976), vol. 2, Paris, 1977. Zbl0354.10008
  20. [20] M. Laurent, M. Mignotte & Y. Nesterenko – “Formes linéaires en deux logarithmes et déterminants d’interpolation”, J. Number Theory55 (1995), p. 285–321. Zbl0843.11036MR1366574
  21. [21] V.A. Lebesgue – “Sur l’impossibilité en nombres entiers de l’équation x m = y 2 + 1 ”, Nouv. Ann. Math. 9 (1850), p. 178–181. 
  22. [22] E. Matveev – “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers I”, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), p. 81–136, (Russian); English transl.: Izv. Math., 62 (1998), p. 723-772. Zbl0923.11107MR1660150
  23. [23] —, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II”, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), p. 125–180, (Russian); English transl.: Izv. Math., 64 (2000), p. 125–180. Zbl1013.11043MR1817252
  24. [24] T. Metsänkylä – “Catalan’s equation with a quadratic exponent”, C. R. Math. Rep. Acad. Sci. Canada23 (2001), p. 28–32. Zbl1031.11017
  25. [25] M. Mignotte – “Un critère élémentaire pour l’équation de Catalan”, C. R. Math. Rep. Acad. Sci. Canada15 (1993), p. 199–200. Zbl0802.11010MR1250706
  26. [26] —, “Catalan’s equation just before 2000”, in Number theory (Turku, 1999), de Gruyter, Berlin, 2001, p. 247–254. Zbl1065.11019MR1822013
  27. [27] M. Mignotte & Y. Roy – “Catalan’s equation has no new solutions with either exponent less than 10651 ”, Experimental Math.4 (1995), p. 259–268. Zbl0857.11012MR1387692
  28. [28] —, “Minorations pour l’équation de Catalan”, C. R. Acad. Sci. Paris Sér. I Math.324 (1997), p. 377–380. Zbl0887.11018MR1440951
  29. [29] P. Mihăilescu – “A class number free criterion for Catalan’s conjecture”, J. Number Theory99 (2003), p. 225–231. Zbl1049.11036
  30. [30] —, “Primary cyclotomic units and a proof of Catalan’s conjecture”, J. reine angew. Math., to appear. Zbl1067.11017MR2076124
  31. [31] —, “On the class group of cyclotomic extensions in the presence of a solution to Catalan’s equation”, a manuscript. Zbl1104.11049
  32. [32] T.W. O’Neil – “Improved upper bounds on the exponents in Catalan’s equation”, a manuscript, 1995. 
  33. [33] J.-C. Puchta – “On a criterion for Catalan’s conjecture”, Ramanujan J.5 (2001), p. 405–407. Zbl0994.11012MR1891421
  34. [34] P. Ribenboim – Catalan’s Conjecture, Academic Press, Boston, 1994. Zbl0824.11010MR1259738
  35. [35] W. Schwarz – “A note on Catalan’s equation”, Acta Arith.72 (1995), p. 277–279. Zbl0837.11014MR1347490
  36. [36] F. Thaine – “On the ideal class groups of real abelian number fields”, Ann. of Math.128 (1988), p. 1–18. Zbl0665.12003MR951505
  37. [37] R. Tijdeman – “On the equation of Catalan”, Acta Arith.29 (1976), p. 197–209. Zbl0286.10013MR404137
  38. [38] M. Waldschmidt – “Minorations de combinaisons linéaires de logarithmes de nombres algébriques”, Canad. J. Math.45 (1993), p. 176–224. Zbl0774.11036MR1200327
  39. [39] L. Washington – Introduction to cyclotomic fields, 2nd ’ed., Graduate Texts in Math., vol. 83, Springer, New York, 1997. Zbl0966.11047MR1421575
  40. [40] G. Wüstholz (’ed.) – A Panorama of Number Theory or The View from Baker’s Garden, Cambridge University Press, 2002. Zbl0997.00017MR1975726

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.