The strong perfect graph theorem
Séminaire Bourbaki (2005-2006)
- Volume: 48, page 123-136
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. Berge – “Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung)”, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 10 (1961), p. 114–115.
- [2] M. Burlet & J. Fonlupt – “Polynomial algorithm to recognize a Meyniel graph”, Ann. Discrete Math.21 (1984), p. 225–252. Zbl0558.05055MR778765
- [3] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour & K. Vušković – “Recognizing Berge graphs”, Combinatorica 25 (2005), no. 2, p. 143–186. Zbl1089.05027MR2127609
- [4] M. Chudnovsky, N. Robertson, P. Seymour & R. Thomas – “Workshop on Graph Colouring and Decomposition”, exposé oral, Princeton, septembre 2001.
- [5] —, “The strong perfect graph theorem”, Ann. of Math. (2) 164 (2006), no. 1, p. 51–229. Zbl1112.05042MR2233847
- [6] M. Chudnovsky & P. Seymour – communication personnelle, janvier 2002.
- [7] —, communication personnelle, mai 2002.
- [8] V. Chvátal – “Star-cutsets and perfect graphs”, J. Combin. Theory Ser. B 39 (1985), no. 3, p. 189–199. Zbl0674.05058MR815391
- [9] V. Chvátal, J. Fonlupt, L. Sun & A. Zemirline – “Recognizing dart-free perfect graphs”, SIAM J. Comput. 31 (2002), no. 5, p. 1315–1338. Zbl1001.05061MR1936646
- [10] V. Chvátal & N. Sbihi – “Recognizing claw-free perfect graphs”, J. Combin. Theory Ser. B 44 (1988), no. 2, p. 154–176. Zbl0669.05054MR930204
- [11] —, “Bull-free Berge graphs are perfect”, Graphs Combin. 3 (1987), no. 2, p. 127–139. Zbl0633.05056MR932129
- [12] M. Conforti & G. Cornuéjols – “Graphs without odd holes, parachutes or proper wheels : a generalization of Meyniel graphs and of line graphs of bipartite graphs”, J. Combin. Theory Ser. B 87 (2003), no. 2, p. 300–330. Zbl1030.05049MR1957481
- [13] M. Conforti, G. Cornuéjols & K. Vušković – “Decomposition of odd-hole-free graphs by double star cutsets and 2-joins”, Discrete Appl. Math. 141 (2004), no. 1-3, p. 41–91. Zbl1043.05096MR2065897
- [14] —, “Square-free perfect graphs”, J. Combin. Theory Ser. B 90 (2004), no. 2, p. 257–307. Zbl1033.05047MR2034030
- [15] M. Conforti, G. Cornuéjols & G. Zambelli – “Decomposing Berge graphs containing no proper wheel, subdivided prism or their complements”, Combinatorica26 (2006), p. 533–558. Zbl1121.05052MR2279669
- [16] G. Cornuéjols & W. H. Cunningham – “Compositions for perfect graphs”, Discrete Math. 55 (1985), no. 3, p. 245–254. Zbl0562.05043MR802663
- [17] J. Fonlupt & A. Zemirline – “A polynomial recognition algorithm for perfect --free graphs”, 1986, rapport technique RT-16, Artemis, IMAG, Grenoble, France.
- [18] D. R. Fulkerson – “On the perfect graph theorem”, in Mathematical progamming (Madison 1972), Math. Res. Center Publ., vol. 30, Academic Press, New York, 1973, p. 69–76. Zbl0267.05119MR373947
- [19] G. S. Gasparian – “Minimal imperfect graphs : a simple approach”, Combinatorica 16 (1996), no. 2, p. 209–212. Zbl0858.05044MR1401893
- [20] D. König – “Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre”, Math. Ann. 77 (1916), no. 4, p. 453–465. Zbl46.0146.03MR1511872JFM46.0146.03
- [21] L. Lovász – “A characterization of perfect graphs”, J. Combinatorial Theory Ser. B13 (1972), p. 95–98. Zbl0241.05107MR309780
- [22] —, “Normal hypergraphs and the perfect graph conjecture”, Discrete Math. 2 (1972), no. 3, p. 253–267. Zbl0239.05111MR302480
- [23] F. Maffray & B. A. Reed – “A description of claw-free perfect graphs”, J. Combin. Theory Ser. B 75 (1999), no. 1, p. 134–156. Zbl0933.05062MR1666954
- [24] M. W. Padberg – “Perfect zero-one matrices”, Math. Programming6 (1974), p. 180–196. Zbl0284.90061MR340053
- [25] F. Roussel & P. Rubio – “About skew partitions in minimal imperfect graphs”, J. Combin. Theory Ser. B 83 (2001), no. 2, p. 171–190. Zbl1028.05036MR1866394