Representations of quantum groups and (conditionally) invariant q-difference equations

Vladimir Dobrev

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 203-222
  • ISSN: 0137-6934

Abstract

top
We give a systematic discussion of the relation between q-difference equations which are conditionally U q ( ) -invariant and subsingular vectors of Verma modules over U q ( ) (the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra over ℂg or ℝ). We treat in detail the cases of the conformal algebra, = su(2,2), and its complexification, = sl(4). The conditionally invariant equations are the q-deformed d’Alembert equation and a new equation arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand.

How to cite

top

Dobrev, Vladimir. "Representations of quantum groups and (conditionally) invariant q-difference equations." Banach Center Publications 40.1 (1997): 203-222. <http://eudml.org/doc/252189>.

@article{Dobrev1997,
abstract = {We give a systematic discussion of the relation between q-difference equations which are conditionally $U_q()$-invariant and subsingular vectors of Verma modules over $U_q()$ (the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra over ℂg or ℝ). We treat in detail the cases of the conformal algebra, = su(2,2), and its complexification, = sl(4). The conditionally invariant equations are the q-deformed d’Alembert equation and a new equation arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand.},
author = {Dobrev, Vladimir},
journal = {Banach Center Publications},
keywords = {-difference equations; subsingular vectors; Verma modules; Drinfeld-Jimbo -deformation; conformal algebra; -deformed d’Alembert equation},
language = {eng},
number = {1},
pages = {203-222},
title = {Representations of quantum groups and (conditionally) invariant q-difference equations},
url = {http://eudml.org/doc/252189},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Dobrev, Vladimir
TI - Representations of quantum groups and (conditionally) invariant q-difference equations
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 203
EP - 222
AB - We give a systematic discussion of the relation between q-difference equations which are conditionally $U_q()$-invariant and subsingular vectors of Verma modules over $U_q()$ (the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra over ℂg or ℝ). We treat in detail the cases of the conformal algebra, = su(2,2), and its complexification, = sl(4). The conditionally invariant equations are the q-deformed d’Alembert equation and a new equation arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand.
LA - eng
KW - -difference equations; subsingular vectors; Verma modules; Drinfeld-Jimbo -deformation; conformal algebra; -deformed d’Alembert equation
UR - http://eudml.org/doc/252189
ER -

References

top
  1. [1] A.O. Barut and R. Rączka, Theory of Group Representations and Applications, II edition, (Polish Sci. Publ., Warsaw, 1980). Zbl0471.22021
  2. [2] I.N. Bernstein, I.M. Gel'fand and S.I. Gel'fand, Funkts. Anal. Prilozh. 5 (1) (1971) 1; English translation: Funct. Anal. Appl. 5 (1971) 1. 
  3. [3] B. Binegar, C. Fronsdal and W. Heidenreich, J. Math. Phys. 24 (1983) 2828. 
  4. [4] C. De Concini and V.G. Kac, Progress in Math. 92 (Birkhäuser, Boston, 1990) p. 471. 
  5. [5] V.K. Dobrev, J. Math. Phys. 26 (1985) 235. 
  6. [6] V.K. Dobrev, Rep. Math. Phys. 25 (1988) 159. 
  7. [7] V.K. Dobrev, in: Proc. of the International Group Theory Conference (St. Andrews, 1989), eds. C.M. Campbell and E.F. Robertson, Vol. 1, London Math. Soc. Lect. Note Ser. 159 (1991) p. 87. 
  8. [8] V.K. Dobrev, Lett. Math. Phys. 22 (1991) 251. 
  9. [9] V.K. Dobrev, J. Phys. A26 (1993) 1317. 
  10. [10] V.K. Dobrev, J. Phys. A27 (1994) 4841 & 6633, (first as preprint ASI-TPA/10/93 (1993)). 
  11. [11] V.K. Dobrev, Phys. Lett. 341B (1994) 133 & 346B (1995) 427 (first as preprint ASI-TPA/15/94 (June 1994)). 
  12. [12] V.K. Dobrev, preprint ASI-TPA/22/94, (September 1994); invited talk at the Symposium 'Symmetries in Science VIII', (August 1994, Bregenz, Austria), Proceedings, ed. B. Gruber, (Plenum Press, NY, 1995) p. 55. 
  13. [13] V.K. Dobrev, Kazhdan-Lusztig polynomials and subsingular vectors, ICTP preprint IC/96/15 (January 1996). 
  14. [14] V.K. Dobrev and R. Floreanini, J. Phys. A27 (1994) 4831. 
  15. [15] V.G. Drinfeld, Soviet. Math. Dokl. 32 (1985) 2548; in: Proceedings of the International Congress of Mathematicians, Berkeley (1986), Vol. 1 (The American Mathematical Society, Providence, 1987) p. 798. 
  16. [16] P. Furlan, V.B. Petkova and G.M. Sotkov, J. Math. Phys. 28 (1987) 251. 
  17. [17] P. Furlan, V.B. Petkova, G.M. Sotkov and I.T. Todorov, Riv. del Nuovo Cim. 8 No 3 (1985) 1. 
  18. [18] M. Jimbo, Lett. Math. Phys. 10 (1985) 63; Lett. Math. Phys. 11 (1986) 247. 
  19. [19] D. Kazhdan and G. Lusztig, Inv. Math. 53 (1979) 165. 
  20. [20] Abdus Salam and J. Strathdee, Phys. Rev. 184 (1969) 1760. 
  21. [21] G.M. Sotkov and D.Ts. Stoyanov, J. Phys. A13 (1980) 2807; J. Phys. A16 (1983) 2817. 
  22. [22] T. Yao, J. Math. Phys. 8 (1967) 1931; 9 (1968) 1615; 12 (1971) 315. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.