Wavelet transform and binary coalescence detection

Jean-Michel Innocent; Bruno Torrésani

Banach Center Publications (1997)

  • Volume: 41, Issue: 2, page 179-208
  • ISSN: 0137-6934

Abstract

top
We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.

How to cite

top

Innocent, Jean-Michel, and Torrésani, Bruno. "Wavelet transform and binary coalescence detection." Banach Center Publications 41.2 (1997): 179-208. <http://eudml.org/doc/252200>.

@article{Innocent1997,
abstract = {We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.},
author = {Innocent, Jean-Michel, Torrésani, Bruno},
journal = {Banach Center Publications},
keywords = {time-frequency methods; gravity waves detection; wavelet analysis; wavelet transforms; parameter estimation; binary coalescence signals},
language = {eng},
number = {2},
pages = {179-208},
title = {Wavelet transform and binary coalescence detection},
url = {http://eudml.org/doc/252200},
volume = {41},
year = {1997},
}

TY - JOUR
AU - Innocent, Jean-Michel
AU - Torrésani, Bruno
TI - Wavelet transform and binary coalescence detection
JO - Banach Center Publications
PY - 1997
VL - 41
IS - 2
SP - 179
EP - 208
AB - We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.
LA - eng
KW - time-frequency methods; gravity waves detection; wavelet analysis; wavelet transforms; parameter estimation; binary coalescence signals
UR - http://eudml.org/doc/252200
ER -

References

top
  1. [1] A. Abramovici et al. (1992): LIGO: the Laser Interferometer Gravitational-Wave Observatory, Science, 256, p. 325-333. 
  2. [2] P. Abry and A. Aldroubi (1995): Designing Multiresolution Analysis Type Wavelets and their Fast Algorithms, Int. J. of Fourier Anal. and Appl. 2, 135-159. Zbl0887.42024
  3. [3] A. Antoniadis & G. Oppenheim Eds (1994): proceedings of the conference Wavelets and Statistics, Villard de Lans, France, Lecture Notes in Statistics. 
  4. [4] F. Auger and P. Flandrin (1993): Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method, Technical Report 93.05, Laboratoire d'automatique, Ecole Centrale de Nantes. 
  5. [5] R. Balasubramanian, B.S. Sathyaprakash and S.V. Dhurhandar (1995): Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters, Phys. Rev. D 53, vol. 6 pp. 3033-3055. 
  6. [6] L. Blanchet, T. Damour and B.R. Iyer (1995): Phys. Rev. D 51, p. 5360. 
  7. [7] B. Boashash (1992): Estimating and Interpreting the Instantaneous Frequency of a Signal, Part I: Fundamentals. Proc. IEEE 80, pp. 520-538. Part II: Applications and Algorithms. Proc. IEEE 80, pp. 540-568. 
  8. [8] C. Bradaschia et al. (1990): Nucl. Instrum. Methods Phys. Res. A 518. 
  9. [9] D.R. Brillinger (1981): Time Series; Data Analysis and Theory, Holden Day Inc. Zbl0486.62095
  10. [10] R. Carmona (1993): Wavelet Identification of Transients in Noisy Signals. in Mathematical Imaging: Wavelet Applications in Signal and Image Processing pp. 392-400. 
  11. [11] R. Carmona, W.L. Hwang, B. Torrésani (1995): Characterization of signals by the ridges of their wavelet transform, preprint, submitted to IEEE Trans. Signal Processing. 
  12. [12] R. Carmona, W.L. Hwang, B. Torrésani (1995): Multiridge Detection and Time-Frequency Reconstruction, preprint, submitted to IEEE Trans. Signal Processing. 
  13. [13] R. Carmona, W.L. Hwang, B. Torrésani, Practical Time-Frequency Analysis, monograph, to appear. Zbl1039.42504
  14. [14] C.K. Chui (1992): An Introduction to Wavelets, Academic Press. Zbl0925.42016
  15. [15] J.M. Combes, A. Grossmann, Ph. Tchamitchian Eds. (1989): Wavelets, Time-Frequency Methods and Phase Space, Springer Verlag. 
  16. [16] E. Copson (1965): Asymptotic expansions, Cambridge University Press. Zbl0123.26001
  17. [17] I. Daubechies (1992): Ten Lectures on Wavelets, CBMS-NFS Regional Series in Applied Mathematics 61. 
  18. [18] M.H.A. Davis (1989): A review of the statistical theory of signal detection in Gravitational Wave Data Analysis, B.F.Schutz Ed., Kluwer Academic Publishers. 
  19. [19] N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, Ph. Tchamitchian, B. Torrésani (1992): Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans. Inf. Th. 38, special issue on Wavelet and Multiresolution Analysis 644-664. Zbl0743.42010
  20. [20] R.B. Dingle (1973): Asymptotic expansions, their derivation and interpretation, Academic Press. Zbl0279.41030
  21. [21] R. Flaminio, L. Massonnet, B. Mours, S. Tissot, D. Verkindt and M. Yvert (1994): Fast Trigger Algorithms for Binary Coalescences, Astroparticle Physics 2, pp. 235-248. 
  22. [22] P. Flandrin (1993): Temps-Fréquence, Traité des Nouvelles Technologies, série Traitement du Signal, Hermes. 
  23. [23] D. Gabor (1946): Theory of communication, J. Inst. Elec. Eng. 903, 429. 
  24. [24] A. Grossmann, R. Kronland-Martinet, J. Morlet (1989): Reading and understanding the continuous wavelet transform, in [15] Zbl0850.42006
  25. [25] A. Grossmann, J. Morlet (1984): Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. of Math. An. 15 ,723. Zbl0578.42007
  26. [26] P. Hall, W. Qian and D.M. Titterington (1992): Ridge Finding from Noisy Data. J. Comput. and Graph. Statist. 1, 197-211. 
  27. [27] J.M. Innocent (1994): Remarks about the Detection of Coalescent Binaries, VIRGO technical report. 
  28. [28] J.M. Innocent and B. Torrésani (1996): A Multiresolution Strategy for Detecting Gravitational Waves Generated by Binary Collapses, Preprint. 
  29. [29] J.M. Innocent, J.Y. Vinet (1992): Time-Frequency Analysis of Gravitational Signals from Coalescing Binaries, VIRGO technical Report. 
  30. [30] S. Jaffard and Y. Meyer (1995): Pointwise Behavior of Functions, preprint. 
  31. [31] M. Kass, A. Witkin and D.Terzopoulos (1988): Snakes: Active Contour Models, Int. J. of Computer Vision, 321-331. Zbl0646.68105
  32. [32] K. Kodera, R. Gendrin, C. de Villedary (1978): Analysis of time-varying signals with small BT values, IEEE Trans. ASSP 26, 64. 
  33. [33] L.H. Koopmans (1995): The spectral Analysis of Time Series. Probability and Mathematical Statistics 22, Academic Press. 
  34. [34] A. Królak (1989): Coalescing binaries to post-Newtonain order, in Gravitational Wave Data Analysis, B.F. Schutz Ed., Kluwer Academic Publishers. 
  35. [35] A. Królak, K.D. Kokkotas, G. Schäfer (1995): On estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary, Phys.Rev. D52, 2089. 
  36. [36] A. Królak and B.F. Schutz (1987): Coalescing binaries : probe of the Universe, General Relativity and Gravitation, 19, 1163-1171. 
  37. [37] A. Królak, P. Trzaskoma (1996): Application of the Wavelet Analysis to Estimation of Parameter of the Gravitational-Wave Signal from a Coalescing Binary, Classical and Quantum Gravity 13, pp. 813-830. Zbl0849.60038
  38. [38] P.J.M. van Laarhoven and E.H.L. Aarts (1987): Simulated Annealing: Theory and Applications, Reidel Pub. Co. Zbl0643.65028
  39. [39] S. Mallat (1989): Multiresolution Approximation and Wavelets, Trans. AMS 615, 69-88. 
  40. [40] Y. Meyer (1989): Ondelettes et opérateurs (1989), Hermann. 
  41. [41] Y. Meyer Ed. (1989): Wavelets and applications, Proceedings of the second wavelet conference, Marseille (1989), Masson. 
  42. [42] M.A. Muschietti and B. Torrésani (1995): Pyramidal Algorithms for Littlewood-Paley Decompositions. SIAM J. Math. Anal. 26 925-943. Zbl0834.47011
  43. [43] B. Picinbono, W. Martin (1983): Représentation des signaux par amplitude et phase instantanées, Annales des Télécommunications 38 (1983), 179-190. Zbl0526.94006
  44. [44] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992): Numerical Recipes: the Art of Scientific Computing, Second Edition, Cambridge University Press. Zbl0845.65001
  45. [45] J. Stoer and R. Bulirsch (1991): Introduction to Numerical Analysis, Texts in Applied Mathematics 12, Springer Verlag. Zbl0771.65002
  46. [46] Ph. Tchamitchian, B. Torrésani (1991): Ridge and Skeleton extraction from wavelet transform, in Wavelets and their Applications, M.B. Ruskai & Al Eds, Jones&Bartlett, Boston. 
  47. [47] K.S. Thorne (1987): Gravitational Radiation, in 300 Years of Gravitation, Hawking & Israel Eds, Cambridge University Press. 
  48. [48] K.S. Thorne (1996): Gravitational Waves from Compact Objects, proceedings of the IAU Symposium 165, J. van Paradijs, E. van der Heuvel and E. Kuulkers Eds, Kluwer. 
  49. [49] B. Torrésani (1995): Analyse Continue par Ondelettes, Coll. Savoirs Actuels, InterEditions/Editions du CNRS (in French, to be translated into English). 
  50. [50] D. Verkindt (1993): Etude d'algorithmes rapides de recherche d'un signal d'onde gravitationnelle provenant de coalescence d'étoiles binaires, PhD Thesis, Université de Savoie (in French). 
  51. [51] M. Vetterli and J. Kovacevic (1995): Wavelets and Sub Band Coding, Prentice Hall Signal Processing Series. Zbl0885.94002
  52. [52] J. Ville (1948): Théorie et Applications, de la Notion de Signal Analytique, Cables et Transmissions 2 61-74. 
  53. [53] M.V. Wickerhauser (1994): Adapted Wavelet Analysis, from Theory to Software, A.K. Peters Publ. Zbl0818.42011
  54. [54] E.P. Wigner (1932): On the Quantum Corrections for the Thermodynamic Equilibrium, Phys. Rev. 40, 749-759. Zbl58.0948.07

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.