First order calculi with values in right-universal bimodules

Andrzej Borowiec; Vladislav Kharchenko; Zbigniew Oziewicz

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 171-184
  • ISSN: 0137-6934

Abstract

top
The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

How to cite

top

Borowiec, Andrzej, Kharchenko, Vladislav, and Oziewicz, Zbigniew. "First order calculi with values in right-universal bimodules." Banach Center Publications 40.1 (1997): 171-184. <http://eudml.org/doc/252205>.

@article{Borowiec1997,
abstract = {The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.},
author = {Borowiec, Andrzej, Kharchenko, Vladislav, Oziewicz, Zbigniew},
journal = {Banach Center Publications},
keywords = {differential calculi; quantum groups; noncommutative geometry; derivations; universal right bimodules; partial derivatives},
language = {eng},
number = {1},
pages = {171-184},
title = {First order calculi with values in right-universal bimodules},
url = {http://eudml.org/doc/252205},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Borowiec, Andrzej
AU - Kharchenko, Vladislav
AU - Oziewicz, Zbigniew
TI - First order calculi with values in right-universal bimodules
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 171
EP - 184
AB - The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.
LA - eng
KW - differential calculi; quantum groups; noncommutative geometry; derivations; universal right bimodules; partial derivatives
UR - http://eudml.org/doc/252205
ER -

References

top
  1. [1] H. C. Baehr, A. Dimakis and F. Müller-Hoissen, Differential Calculi on Commutative Algebras, J. Phys. A: Math. Gen. 28 (1995), 3197-3222, hep-th/9412069. Zbl0864.58001
  2. [2] N. Bourbaki, Elements of mathematics.Algebra I.Chapters 1-3, Springer-Verlag, Berlin, 1989. 
  3. [3] A. Borowiec, V. K. Kharchenko and Z. Oziewicz, On free differentials on associative algebra, in : Non-Associative Algebra and Its Applications, S. González (ed.), Kluwer Academic Publishers, Dordrecht 1994, ISBN 0-7923-3117-6, Mathematics and its Applications, vol. 303, 46-53, (hep-th/9312023). Zbl0833.58006
  4. [4] A. Borowiec and V. K. Kharchenko, Algebraic approach to calculi with partial derivatives, Siberian Advances in Mathematics 5, 2 (1995), 10-37. Zbl0852.16027
  5. [5] A. Borowiec and V. K. Kharchenko, Coordinate calculi on associative algebras, in : Quantum Group, Formalism and Applications, J. Lukierski, Z. Popowicz and J. Sobczyk (ed.), Polish Sci. Publ. PWN Ltd., Warszawa, 1995. ISBN 83-01-11770-2, 231-241, q-alg/9501018. Zbl0879.16023
  6. [6] A. Borowiec and V. K. Kharchenko, First order optimum calculi, Bull. Soc. Sci. Lett. Łódź v. 45, Ser. Recher. Deform. XIX, (1995), 75-88, q-alg/9501024. Zbl0883.16024
  7. [7] A. Borowiec, Cartan Pairs, Czech. J. Phys. 46, 12 (1996), 1197 (q-alg/9609011). 
  8. [8] J. Cuntz and D. Quillen, Algebra Extension and Nonsingularity, J. Amer. Math. Soc. 8, 2 (1995), p. 251-289. 
  9. [9] A. Dimakis, F. Müller-Hoissen and T. Striker, Non-commutative differential calculus and lattice gauge theory, J. Phys. A: Math. Gen. 26 (1993), 1927-1949. Zbl0789.58010
  10. [10] G. Maltsiniotis, Le Langage des Espaces et des Groupes Quantiques, Commun. Math. Phys. 151 (1993), 275-302. Zbl0783.17007
  11. [11] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes., Preprint, MPI/91-60 (1991). 
  12. [12] E. E. Mukhin, Yang-Baxter operators and noncommutative de Rham complexes, Russian Acad. Sci. Izv. Math. 58, 2 (1994), 108-131 (in Russian). Zbl0846.17016
  13. [13] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics # 88, Springer-Verlag, New York, 1982. Zbl0497.16001
  14. [14] W. Pusz and S. Woronowicz, Twisted second quantization, Reports on Mathematical Physics 27, 2 (1989), 231-257. Zbl0707.47039
  15. [15] W. Pusz, Twisted canonical anticommutation relations, Reports on Mathematical Phys. 27, 3 (1989), 349-360. Zbl0752.17035
  16. [16] K. Schmüdgen and A. Schüler, Classification of bicovariant calculi on quantum spaces and quantum groups, C. R. Acad. Sci. Paris 316 (1993), 1155-1160. Zbl0795.17019
  17. [17] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear Physics 18 B (1990), 303-312, Proc. Suppl. Volume in honor of R. Stora. Zbl0957.46514
  18. [18] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. Zbl0751.58042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.