First order calculi with values in right-universal bimodules

Andrzej Borowiec; Vladislav Kharchenko; Zbigniew Oziewicz

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 171-184
  • ISSN: 0137-6934

Abstract

top
The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

How to cite

top

Borowiec, Andrzej, Kharchenko, Vladislav, and Oziewicz, Zbigniew. "First order calculi with values in right-universal bimodules." Banach Center Publications 40.1 (1997): 171-184. <http://eudml.org/doc/252205>.

@article{Borowiec1997,
abstract = {The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.},
author = {Borowiec, Andrzej, Kharchenko, Vladislav, Oziewicz, Zbigniew},
journal = {Banach Center Publications},
keywords = {differential calculi; quantum groups; noncommutative geometry; derivations; universal right bimodules; partial derivatives},
language = {eng},
number = {1},
pages = {171-184},
title = {First order calculi with values in right-universal bimodules},
url = {http://eudml.org/doc/252205},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Borowiec, Andrzej
AU - Kharchenko, Vladislav
AU - Oziewicz, Zbigniew
TI - First order calculi with values in right-universal bimodules
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 171
EP - 184
AB - The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.
LA - eng
KW - differential calculi; quantum groups; noncommutative geometry; derivations; universal right bimodules; partial derivatives
UR - http://eudml.org/doc/252205
ER -

References

top
  1. [1] H. C. Baehr, A. Dimakis and F. Müller-Hoissen, Differential Calculi on Commutative Algebras, J. Phys. A: Math. Gen. 28 (1995), 3197-3222, hep-th/9412069. Zbl0864.58001
  2. [2] N. Bourbaki, Elements of mathematics.Algebra I.Chapters 1-3, Springer-Verlag, Berlin, 1989. 
  3. [3] A. Borowiec, V. K. Kharchenko and Z. Oziewicz, On free differentials on associative algebra, in : Non-Associative Algebra and Its Applications, S. González (ed.), Kluwer Academic Publishers, Dordrecht 1994, ISBN 0-7923-3117-6, Mathematics and its Applications, vol. 303, 46-53, (hep-th/9312023). Zbl0833.58006
  4. [4] A. Borowiec and V. K. Kharchenko, Algebraic approach to calculi with partial derivatives, Siberian Advances in Mathematics 5, 2 (1995), 10-37. Zbl0852.16027
  5. [5] A. Borowiec and V. K. Kharchenko, Coordinate calculi on associative algebras, in : Quantum Group, Formalism and Applications, J. Lukierski, Z. Popowicz and J. Sobczyk (ed.), Polish Sci. Publ. PWN Ltd., Warszawa, 1995. ISBN 83-01-11770-2, 231-241, q-alg/9501018. Zbl0879.16023
  6. [6] A. Borowiec and V. K. Kharchenko, First order optimum calculi, Bull. Soc. Sci. Lett. Łódź v. 45, Ser. Recher. Deform. XIX, (1995), 75-88, q-alg/9501024. Zbl0883.16024
  7. [7] A. Borowiec, Cartan Pairs, Czech. J. Phys. 46, 12 (1996), 1197 (q-alg/9609011). 
  8. [8] J. Cuntz and D. Quillen, Algebra Extension and Nonsingularity, J. Amer. Math. Soc. 8, 2 (1995), p. 251-289. 
  9. [9] A. Dimakis, F. Müller-Hoissen and T. Striker, Non-commutative differential calculus and lattice gauge theory, J. Phys. A: Math. Gen. 26 (1993), 1927-1949. Zbl0789.58010
  10. [10] G. Maltsiniotis, Le Langage des Espaces et des Groupes Quantiques, Commun. Math. Phys. 151 (1993), 275-302. Zbl0783.17007
  11. [11] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes., Preprint, MPI/91-60 (1991). 
  12. [12] E. E. Mukhin, Yang-Baxter operators and noncommutative de Rham complexes, Russian Acad. Sci. Izv. Math. 58, 2 (1994), 108-131 (in Russian). Zbl0846.17016
  13. [13] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics # 88, Springer-Verlag, New York, 1982. Zbl0497.16001
  14. [14] W. Pusz and S. Woronowicz, Twisted second quantization, Reports on Mathematical Physics 27, 2 (1989), 231-257. Zbl0707.47039
  15. [15] W. Pusz, Twisted canonical anticommutation relations, Reports on Mathematical Phys. 27, 3 (1989), 349-360. Zbl0752.17035
  16. [16] K. Schmüdgen and A. Schüler, Classification of bicovariant calculi on quantum spaces and quantum groups, C. R. Acad. Sci. Paris 316 (1993), 1155-1160. Zbl0795.17019
  17. [17] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear Physics 18 B (1990), 303-312, Proc. Suppl. Volume in honor of R. Stora. Zbl0957.46514
  18. [18] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. Zbl0751.58042

NotesEmbed ?

top

You must be logged in to post comments.