Differential calculus on 'non-standard' (h-deformed) Minkowski spaces

José de Azcárraga; Francisco Rodenas

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 351-360
  • ISSN: 0137-6934

Abstract

top
The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.

How to cite

top

de Azcárraga, José, and Rodenas, Francisco. "Differential calculus on 'non-standard' (h-deformed) Minkowski spaces." Banach Center Publications 40.1 (1997): 351-360. <http://eudml.org/doc/252207>.

@article{deAzcárraga1997,
abstract = {The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.},
author = {de Azcárraga, José, Rodenas, Francisco},
journal = {Banach Center Publications},
keywords = {-deformed Lorentz groups; -deformed Minkowski spaces; differential calculi},
language = {eng},
number = {1},
pages = {351-360},
title = {Differential calculus on 'non-standard' (h-deformed) Minkowski spaces},
url = {http://eudml.org/doc/252207},
volume = {40},
year = {1997},
}

TY - JOUR
AU - de Azcárraga, José
AU - Rodenas, Francisco
TI - Differential calculus on 'non-standard' (h-deformed) Minkowski spaces
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 351
EP - 360
AB - The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.
LA - eng
KW - -deformed Lorentz groups; -deformed Minkowski spaces; differential calculi
UR - http://eudml.org/doc/252207
ER -

References

top
  1. [1] J.A. de Azcárraga and F. Rodenas, J. Phys. A29, 1215 (1996). 
  2. [2] E.E. Demidov, Yu. I. Manin, E.E. Mukhin and D.V. Zhadanovich, Progr. Theor. Phys. Suppl. 102, 203 (1990); M. Dubois-Violette and G. Launer, Phys. Lett. B245, 175 (1990); S. Zakrzewski, Lett. Math. Phys. 22, 287 (1991); S.L. Woronowicz, Rep. Math. Phys. 30, 259 (1991); B.A. Kupershmidt, J. Phys. A25, L1239 (1992); Ch. Ohn, Lett. Math. Phys. 25, 85 (1992). 
  3. [3] H. Ewen, O. Ogievetsky and J. Wess, Lett. Math. Phys. 22, 297 (1991). 
  4. [4] V. Karimipour, Lett. Math. Phys. 30, 87 (1994); ibid. 35, 303 (1995). 
  5. [5] L.D. Faddeev, N. Yu. Reshetikhin and L.A. Takhtajan, Alg. i Anal. 1, 178 (1989) (Leningrad Math. J. 1, 193 (1990)). 
  6. [6] Yu. I. Manin, Quantum groups and non-commutative geometry, CRM, Univ. Montréal (1988); Commun. Math. Phys. 123, 163 (1989); Topics in non-commutative geometry, Princeton Univ. Press (1991); J. Wess and B. Zumino, Nucl. Phys. (Proc. Suppl.) 18B, 302-312 (1990). 
  7. [7] S.L. Woronowicz and S. Zakrzewski, Compositio Math. 94, 211 (1994). 
  8. [8] P. Podleś and S. Woronowicz, Commun. Math. Phys. 178, 61 (1996). 
  9. [9] P. Podleś and S. Woronowicz, Commun. Math. Phys. 130, 381 (1990). 
  10. [10] U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, Z.Phys. C48, 159 (1990); Int. J. Mod. Phys. A6, 3081 (1991). 
  11. [11] O. Ogievetsky, W.B. Schmidke, J. Wess and B. Zumino, Commun. Math. Phys. 150, 495 (1992). 
  12. [12]. 
  13. [13] L. Freidel and J.M. Maillet, Phys. Lett. B262, 278 (1991). 
  14. [14] P.P. Kulish and E.K. Sklyanin, J. Phys. A25, 5963 (1992). 
  15. [15] P.P. Kulish and R. Sasaki, Progr. Theor. Phys. 89, 741 (1993). 
  16. [16] Majid S., in Quantum Groups, Lect. Notes Math. 1510, 79 (1992); J. Math. Phys. 32, 3246 (1991). Zbl0821.16042
  17. [17] S. Majid, J. Math. Phys. 34, 1176 (1993); Commun. Math. Phys. 156, 607 (1993). 
  18. [18] B. Zumino, Introduction to the differential geometry of quantum groups, in Mathematical Physics X, K. Schmüdgen ed., Springer-Verlag (1992), p. 20. Zbl0947.46502
  19. [19] J.A. de Azcárraga, P.P. Kulish and F. Rodenas, Lett. Math. Phys. 32, 173 (1994). 
  20. [20] J.A. de Azcárraga and F. Rodenas, Differential calculus on q -Minkowski space, in Quantum groups, J. Lukierski et al. eds., PWN (1994), p. 221. 
  21. [21] P. Podleś, Commun. Math. Phys. 181, 569 (1996). 
  22. [22] O. Ogievetsky and B. Zumino, Lett. Math. Phys. 25, 131 (1992). 
  23. [23] U. Meyer, Commun. Math. Phys. 168, 249 (1995); S. Majid and U. Meyer, Z. Phys. C63, 357 (1994). 
  24. [24] A.P. Isaev and A.A. Vladimirov, Lett. Math. Phys. 33, 297 (1995). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.