Differential calculus on 'non-standard' (h-deformed) Minkowski spaces
José de Azcárraga; Francisco Rodenas
Banach Center Publications (1997)
- Volume: 40, Issue: 1, page 351-360
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topde Azcárraga, José, and Rodenas, Francisco. "Differential calculus on 'non-standard' (h-deformed) Minkowski spaces." Banach Center Publications 40.1 (1997): 351-360. <http://eudml.org/doc/252207>.
@article{deAzcárraga1997,
abstract = {The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.},
author = {de Azcárraga, José, Rodenas, Francisco},
journal = {Banach Center Publications},
keywords = {-deformed Lorentz groups; -deformed Minkowski spaces; differential calculi},
language = {eng},
number = {1},
pages = {351-360},
title = {Differential calculus on 'non-standard' (h-deformed) Minkowski spaces},
url = {http://eudml.org/doc/252207},
volume = {40},
year = {1997},
}
TY - JOUR
AU - de Azcárraga, José
AU - Rodenas, Francisco
TI - Differential calculus on 'non-standard' (h-deformed) Minkowski spaces
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 351
EP - 360
AB - The differential calculus on 'non-standard' h-Minkowski spaces is given. In particular it is shown that, for them, it is possible to introduce coordinates and derivatives which are simultaneously hermitian.
LA - eng
KW - -deformed Lorentz groups; -deformed Minkowski spaces; differential calculi
UR - http://eudml.org/doc/252207
ER -
References
top- [1] J.A. de Azcárraga and F. Rodenas, J. Phys. A29, 1215 (1996).
- [2] E.E. Demidov, Yu. I. Manin, E.E. Mukhin and D.V. Zhadanovich, Progr. Theor. Phys. Suppl. 102, 203 (1990); M. Dubois-Violette and G. Launer, Phys. Lett. B245, 175 (1990); S. Zakrzewski, Lett. Math. Phys. 22, 287 (1991); S.L. Woronowicz, Rep. Math. Phys. 30, 259 (1991); B.A. Kupershmidt, J. Phys. A25, L1239 (1992); Ch. Ohn, Lett. Math. Phys. 25, 85 (1992).
- [3] H. Ewen, O. Ogievetsky and J. Wess, Lett. Math. Phys. 22, 297 (1991).
- [4] V. Karimipour, Lett. Math. Phys. 30, 87 (1994); ibid. 35, 303 (1995).
- [5] L.D. Faddeev, N. Yu. Reshetikhin and L.A. Takhtajan, Alg. i Anal. 1, 178 (1989) (Leningrad Math. J. 1, 193 (1990)).
- [6] Yu. I. Manin, Quantum groups and non-commutative geometry, CRM, Univ. Montréal (1988); Commun. Math. Phys. 123, 163 (1989); Topics in non-commutative geometry, Princeton Univ. Press (1991); J. Wess and B. Zumino, Nucl. Phys. (Proc. Suppl.) 18B, 302-312 (1990).
- [7] S.L. Woronowicz and S. Zakrzewski, Compositio Math. 94, 211 (1994).
- [8] P. Podleś and S. Woronowicz, Commun. Math. Phys. 178, 61 (1996).
- [9] P. Podleś and S. Woronowicz, Commun. Math. Phys. 130, 381 (1990).
- [10] U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, Z.Phys. C48, 159 (1990); Int. J. Mod. Phys. A6, 3081 (1991).
- [11] O. Ogievetsky, W.B. Schmidke, J. Wess and B. Zumino, Commun. Math. Phys. 150, 495 (1992).
- [12].
- [13] L. Freidel and J.M. Maillet, Phys. Lett. B262, 278 (1991).
- [14] P.P. Kulish and E.K. Sklyanin, J. Phys. A25, 5963 (1992).
- [15] P.P. Kulish and R. Sasaki, Progr. Theor. Phys. 89, 741 (1993).
- [16] Majid S., in Quantum Groups, Lect. Notes Math. 1510, 79 (1992); J. Math. Phys. 32, 3246 (1991). Zbl0821.16042
- [17] S. Majid, J. Math. Phys. 34, 1176 (1993); Commun. Math. Phys. 156, 607 (1993).
- [18] B. Zumino, Introduction to the differential geometry of quantum groups, in Mathematical Physics X, K. Schmüdgen ed., Springer-Verlag (1992), p. 20. Zbl0947.46502
- [19] J.A. de Azcárraga, P.P. Kulish and F. Rodenas, Lett. Math. Phys. 32, 173 (1994).
- [20] J.A. de Azcárraga and F. Rodenas, Differential calculus on -Minkowski space, in Quantum groups, J. Lukierski et al. eds., PWN (1994), p. 221.
- [21] P. Podleś, Commun. Math. Phys. 181, 569 (1996).
- [22] O. Ogievetsky and B. Zumino, Lett. Math. Phys. 25, 131 (1992).
- [23] U. Meyer, Commun. Math. Phys. 168, 249 (1995); S. Majid and U. Meyer, Z. Phys. C63, 357 (1994).
- [24] A.P. Isaev and A.A. Vladimirov, Lett. Math. Phys. 33, 297 (1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.