The multiple gamma function and its q-analogue

Kimio Ueno; Michitomo Nishizawa

Banach Center Publications (1997)

  • Volume: 40, Issue: 1, page 429-441
  • ISSN: 0137-6934

Abstract

top
We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.

How to cite

top

Ueno, Kimio, and Nishizawa, Michitomo. "The multiple gamma function and its q-analogue." Banach Center Publications 40.1 (1997): 429-441. <http://eudml.org/doc/252209>.

@article{Ueno1997,
abstract = {We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.},
author = {Ueno, Kimio, Nishizawa, Michitomo},
journal = {Banach Center Publications},
keywords = {multiple -gamma function},
language = {eng},
number = {1},
pages = {429-441},
title = {The multiple gamma function and its q-analogue},
url = {http://eudml.org/doc/252209},
volume = {40},
year = {1997},
}

TY - JOUR
AU - Ueno, Kimio
AU - Nishizawa, Michitomo
TI - The multiple gamma function and its q-analogue
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 429
EP - 441
AB - We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.
LA - eng
KW - multiple -gamma function
UR - http://eudml.org/doc/252209
ER -

References

top
  1. [1] R. Askey, The q-Gamma and q-Beta functions, Appl. Anal. 8 (1978), pp. 125-141. Zbl0398.33001
  2. [2] E. W. Barnes, The theory of G-function, Quart. J. Math. 31 (1899), pp. 264-314. Zbl30.0389.02
  3. [3] E. W. Barnes, Genesis of the double gamma function, Proc. London. Math. Soc. 31 (1900), pp. 358-381. Zbl30.0389.03
  4. [4] E. W. Barnes, The theory of the double gamma function, Phil. Trans. Royal Soc. (A) 196 (1900), pp. 265-388. 
  5. [5] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Phil. Soc. 19 (1904), pp. 374-425. 
  6. [6] J. Dufresnoy et C. Pisot, Sur la relation fonctionnelle f(x+1)-f(x)=ϕ(x), Bull. Soc. Math. Belgique. 15 (1963), pp. 259-270. Zbl0122.09802
  7. [7] G. H. Hardy, On the expression of the double zeta-function and double gamma function in terms of elliptic functions, Trans. Cambridge. Phil. Soc. 20 (1905), pp. 395-427. 
  8. [8] G. H. Hardy, On double Fourier series and especially these which represent the double zeta-function and incommensurable parameters, Quart. J. Math. 37, (1906), pp. 53-79. 
  9. [9] F. H. Jackson, A generalization of the functions Γ(n) and x n , Proc. Roy. Soc. London. 74 (1904), pp. 64-72. Zbl35.0460.01
  10. [10] F. H. Jackson, The basic gamma function and the elliptic functions, Proc. Roy. Soc. London. A 76 (1905), pp. 127-144. Zbl36.0513.03
  11. [11] T. Koornwinder, Jacobi function as limit cases of q-ultraspherical polynomial, J. Math. Anal. and Appl 148 (1990), pp. 44-54. Zbl0713.33010
  12. [12] N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan. Acad. 67 A (1991), pp. 61-64. Zbl0738.11041
  13. [13] N. Kurokawa, Multiple zeta functions; an example, Adv. Studies. Pure. Math. 21 (1992), pp. 219-226. Zbl0795.11037
  14. [14] N. Kurokawa, Gamma factors and Plancherel measures, Proc. Japan. Acad. 68 A (1992), pp. 256-260. 
  15. [15] N. Kurokawa, On a q-analogues of multiple sine functions, RIMS. kokyuroku 843. (1992), pp. 1-10 
  16. [16] N. Kurokawa, Lectures delivered at Tokyo Institute of Technology, 1993. 
  17. [17] Yu. Manin, Lectures on Zeta Functions and Motives, Asterisque. 228 (1995), pp. 121-163. 
  18. [18] D. S. Moak, The q-analogue of Stirling Formula, Rocky Mountain J. Math,14 (1984),pp. 403-413. Zbl0538.33003
  19. [19] M. Nishizawa, On a q-analogue of the multiple gamma functions, to appear in Lett. Math. Phys. q-alg/9505086. 
  20. [20] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. 1A. Vol 24 (1977), pp 167-199. Zbl0364.12012
  21. [21] T. Shintani, A proof of Classical Kronecker limit formula, Tokyo J. Math. Vol.3 (1980), pp 191-199. Zbl0462.10014
  22. [22] K. Ueno and M. Nishizawa, Quantum groups and zeta-functions in: J. Lukierski, Z.Popowicz and J.Sobczyk (eds.) 'Quantum Groups: Formalism and Applications' Proceedings of the XXX-th Karpacz Winter School. pp. 115-126 Polish Scientific Publishers PWN. hep-th/9408143. Zbl0874.17006
  23. [23] K. Ueno and M. Nishizawa, in preparation. 
  24. [24] I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM. J. Math. Anal 19 (1988), pp. 493-507. Zbl0641.33003
  25. [25] M. F. Vignéras, L'équation fonctionnelle de la fonction zeta de Selberg de groupe modulaire PSL(2,Z), Asterisque. 61 (1979), pp. 235-249. 
  26. [26] A. Voros, Spectral functions, Special functions and the Selberg zeta functions, Comm. Math. Phys. 110 (1987), pp. 431-465. Zbl0631.10025
  27. [27] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth edition, Cambrige Univ. Press. Zbl45.0433.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.