The multiple gamma function and its q-analogue
Kimio Ueno; Michitomo Nishizawa
Banach Center Publications (1997)
- Volume: 40, Issue: 1, page 429-441
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topUeno, Kimio, and Nishizawa, Michitomo. "The multiple gamma function and its q-analogue." Banach Center Publications 40.1 (1997): 429-441. <http://eudml.org/doc/252209>.
@article{Ueno1997,
abstract = {We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.},
author = {Ueno, Kimio, Nishizawa, Michitomo},
journal = {Banach Center Publications},
keywords = {multiple -gamma function},
language = {eng},
number = {1},
pages = {429-441},
title = {The multiple gamma function and its q-analogue},
url = {http://eudml.org/doc/252209},
volume = {40},
year = {1997},
}
TY - JOUR
AU - Ueno, Kimio
AU - Nishizawa, Michitomo
TI - The multiple gamma function and its q-analogue
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 429
EP - 441
AB - We give an asymptotic expansion (the higher Stirling formula) and an infinite product representation (the Weierstrass product formula) of the Vignéras multiple gamma function by considering the classical limit of the multiple q-gamma function.
LA - eng
KW - multiple -gamma function
UR - http://eudml.org/doc/252209
ER -
References
top- [1] R. Askey, The q-Gamma and q-Beta functions, Appl. Anal. 8 (1978), pp. 125-141. Zbl0398.33001
- [2] E. W. Barnes, The theory of G-function, Quart. J. Math. 31 (1899), pp. 264-314. Zbl30.0389.02
- [3] E. W. Barnes, Genesis of the double gamma function, Proc. London. Math. Soc. 31 (1900), pp. 358-381. Zbl30.0389.03
- [4] E. W. Barnes, The theory of the double gamma function, Phil. Trans. Royal Soc. (A) 196 (1900), pp. 265-388.
- [5] E. W. Barnes, On the theory of the multiple gamma functions, Trans. Cambridge Phil. Soc. 19 (1904), pp. 374-425.
- [6] J. Dufresnoy et C. Pisot, Sur la relation fonctionnelle f(x+1)-f(x)=ϕ(x), Bull. Soc. Math. Belgique. 15 (1963), pp. 259-270. Zbl0122.09802
- [7] G. H. Hardy, On the expression of the double zeta-function and double gamma function in terms of elliptic functions, Trans. Cambridge. Phil. Soc. 20 (1905), pp. 395-427.
- [8] G. H. Hardy, On double Fourier series and especially these which represent the double zeta-function and incommensurable parameters, Quart. J. Math. 37, (1906), pp. 53-79.
- [9] F. H. Jackson, A generalization of the functions Γ(n) and , Proc. Roy. Soc. London. 74 (1904), pp. 64-72. Zbl35.0460.01
- [10] F. H. Jackson, The basic gamma function and the elliptic functions, Proc. Roy. Soc. London. A 76 (1905), pp. 127-144. Zbl36.0513.03
- [11] T. Koornwinder, Jacobi function as limit cases of q-ultraspherical polynomial, J. Math. Anal. and Appl 148 (1990), pp. 44-54. Zbl0713.33010
- [12] N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan. Acad. 67 A (1991), pp. 61-64. Zbl0738.11041
- [13] N. Kurokawa, Multiple zeta functions; an example, Adv. Studies. Pure. Math. 21 (1992), pp. 219-226. Zbl0795.11037
- [14] N. Kurokawa, Gamma factors and Plancherel measures, Proc. Japan. Acad. 68 A (1992), pp. 256-260.
- [15] N. Kurokawa, On a q-analogues of multiple sine functions, RIMS. kokyuroku 843. (1992), pp. 1-10
- [16] N. Kurokawa, Lectures delivered at Tokyo Institute of Technology, 1993.
- [17] Yu. Manin, Lectures on Zeta Functions and Motives, Asterisque. 228 (1995), pp. 121-163.
- [18] D. S. Moak, The q-analogue of Stirling Formula, Rocky Mountain J. Math,14 (1984),pp. 403-413. Zbl0538.33003
- [19] M. Nishizawa, On a q-analogue of the multiple gamma functions, to appear in Lett. Math. Phys. q-alg/9505086.
- [20] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. 1A. Vol 24 (1977), pp 167-199. Zbl0364.12012
- [21] T. Shintani, A proof of Classical Kronecker limit formula, Tokyo J. Math. Vol.3 (1980), pp 191-199. Zbl0462.10014
- [22] K. Ueno and M. Nishizawa, Quantum groups and zeta-functions in: J. Lukierski, Z.Popowicz and J.Sobczyk (eds.) 'Quantum Groups: Formalism and Applications' Proceedings of the XXX-th Karpacz Winter School. pp. 115-126 Polish Scientific Publishers PWN. hep-th/9408143. Zbl0874.17006
- [23] K. Ueno and M. Nishizawa, in preparation.
- [24] I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM. J. Math. Anal 19 (1988), pp. 493-507. Zbl0641.33003
- [25] M. F. Vignéras, L'équation fonctionnelle de la fonction zeta de Selberg de groupe modulaire PSL(2,Z), Asterisque. 61 (1979), pp. 235-249.
- [26] A. Voros, Spectral functions, Special functions and the Selberg zeta functions, Comm. Math. Phys. 110 (1987), pp. 431-465. Zbl0631.10025
- [27] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth edition, Cambrige Univ. Press. Zbl45.0433.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.