Introduction to quantum Lie algebras
Banach Center Publications (1997)
- Volume: 40, Issue: 1, page 91-97
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topDelius, Gustav. "Introduction to quantum Lie algebras." Banach Center Publications 40.1 (1997): 91-97. <http://eudml.org/doc/252214>.
@article{Delius1997,
abstract = {Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras $U_h(g)$. The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of $(sl_2)_h$.},
author = {Delius, Gustav},
journal = {Banach Center Publications},
keywords = {quantum Lie algebras; quantized enveloping algebras; quantum Lie bracket},
language = {eng},
number = {1},
pages = {91-97},
title = {Introduction to quantum Lie algebras},
url = {http://eudml.org/doc/252214},
volume = {40},
year = {1997},
}
TY - JOUR
AU - Delius, Gustav
TI - Introduction to quantum Lie algebras
JO - Banach Center Publications
PY - 1997
VL - 40
IS - 1
SP - 91
EP - 97
AB - Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras $U_h(g)$. The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of $(sl_2)_h$.
LA - eng
KW - quantum Lie algebras; quantized enveloping algebras; quantum Lie bracket
UR - http://eudml.org/doc/252214
ER -
References
top- [1] Dri V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.
- [2] Jim M. Jimbo, A q-Difference Analogue of U(g) and the Yang-Baxter Equation, Lett. Math. Phys. 10 (1985) 63. Zbl0587.17004
- [3] G. W. Delius, A. Hüffmann, On Quantum Lie Algebras and Quantum Root Systems, q-alg/9506017, J. Phys. A. 29 (1996) 1703. Zbl0916.17011
- [4] G. W. Delius, M. D. Gould, Quantum Lie Algebras, their existence, uniqueness and q-antisymmetry, KCL-TH-96-05, q-alg/9605025, Commun. Math. Phys. (in print).
- [5] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys. 122 (1989) 125. Zbl0751.58042
- [6] P. Aschieri, L. Castellani, An introduction to noncommutative differential geometry on quantum groups, Int. J. Mod. Phys. A8 (1993) 1667 Zbl0802.58007
- D. Bernard, Quantum Lie Algebras and Differential Calculus on Quantum Groups, Prog. Theo. Phys. Suppl. 102 (1990) 49
- B. Jurco, Differential Calculus on Quantized Simple Lie Groups, Lett. Math. Phys. 22 (1991) 177 Zbl0753.17020
- P. Schupp, P. Watts, B. Zumino, Bicovariant Quantum Algebras and Quantum Lie Algebras, Commun. Math. Phys. 157 (1993) 305 Zbl0808.17010
- P. Schupp, Quantum Groups, Non-Commutative Differential Geometry and Applications, hep-th/9312075 (1993)
- K. Schmüdgen, A. Schüler, Classification of Bicovariant Differential Calculi on Quantum Groups of Type A, B, C and D, Comm. Math. Phys. 107 (1995) 635
- A. Sudbery, Quantum Lie Algebras of Type , q-alg/9510004.
- [7] Andrew V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press (1994). Zbl0839.17009
- [8] G.W. Delius, M.D. Gould, A. Hüffmann, Y.-Z. Zhang, Quantum Lie algebras associated to and , q-alg/9508013. Zbl0905.17008
- [9] V. Lyubashenko and A. Sudbery, Quantum Lie algebras of type A(N), q-alg/9510004.
- [10] World Wide Web, http:/www.mth.kcl.ac.uk/~delius/q-lie.html.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.