A nilpotency condition for finitely generated soluble groups

Costantino Delizia

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 4, page 237-239
  • ISSN: 1120-6330

Abstract

top
We prove that if k > 1 is an integer and G is a finitely generated soluble group such that every infinite set of elements of G contains a pair which generates a nilpotent subgroup of class at most k , then G is an extension of a finite group by a torsion-free k -Engel group. As a corollary, there exists an integer n , depending only on k and the derived length of G , such that G / Z n G is finite. For k < 4 , such n depends only on k .

How to cite

top

Delizia, Costantino. "A nilpotency condition for finitely generated soluble groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 237-239. <http://eudml.org/doc/252273>.

@article{Delizia1998,
abstract = {We prove that if \( k > 1 \) is an integer and \( G \) is a finitely generated soluble group such that every infinite set of elements of \( G \) contains a pair which generates a nilpotent subgroup of class at most \( k \), then \( G \) is an extension of a finite group by a torsion-free \( k \)-Engel group. As a corollary, there exists an integer \( n \), depending only on \( k \) and the derived length of \( G \) , such that \( G / Z\_\{n\} (G) \) is finite. For \( k < 4 \), such \( n \) depends only on \( k \).},
author = {Delizia, Costantino},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Commutators; Nilpotency condition; Infinite set; almost nilpotent groups; Engel conditions; finitely generated soluble groups; infinite sets of elements; nilpotent subgroups; extensions; torsionfree Engel groups; derived lengths},
language = {eng},
month = {12},
number = {4},
pages = {237-239},
publisher = {Accademia Nazionale dei Lincei},
title = {A nilpotency condition for finitely generated soluble groups},
url = {http://eudml.org/doc/252273},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Delizia, Costantino
TI - A nilpotency condition for finitely generated soluble groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 237
EP - 239
AB - We prove that if \( k > 1 \) is an integer and \( G \) is a finitely generated soluble group such that every infinite set of elements of \( G \) contains a pair which generates a nilpotent subgroup of class at most \( k \), then \( G \) is an extension of a finite group by a torsion-free \( k \)-Engel group. As a corollary, there exists an integer \( n \), depending only on \( k \) and the derived length of \( G \) , such that \( G / Z_{n} (G) \) is finite. For \( k < 4 \), such \( n \) depends only on \( k \).
LA - eng
KW - Commutators; Nilpotency condition; Infinite set; almost nilpotent groups; Engel conditions; finitely generated soluble groups; infinite sets of elements; nilpotent subgroups; extensions; torsionfree Engel groups; derived lengths
UR - http://eudml.org/doc/252273
ER -

References

top
  1. Delizia, C., Finitely generated soluble groups with a condition on infinite subsets. Istituto Lombardo, Rend. Sc., A 128, 1994, 201-208. Zbl0882.20020MR1433488
  2. Hall, P., Finite-by-nilpotent groups. Proc. Cambridge Philos. Soc., 52, 1956, 611-616. Zbl0072.25801MR80095
  3. Heineken, H., Engelsche Elemente der Länge drei. Illinois J. Math., 5, 1961, 681-707. Zbl0232.20073MR131469
  4. Kappe, L. C. - Kappe, W. P., On three-Engel groups. Bull. Austral. Math. Soc., 7, 1972, 391-405. Zbl0238.20044MR315001
  5. Lennox, J. C. - Wiegold, J., Extensions of a problem of Paul Erdös on groups. J. Austral. Math. Soc., 21, 1976, 467-472. Zbl0492.20019
  6. Robinson, D. J. S., Finiteness conditions and generalized soluble groups. Springer-Verlag, Berlin1972. Zbl0243.20033
  7. Robinson, D. J. S., A course in the theory of groups. Springer-Verlag, Berlin1982. Zbl0836.20001MR648604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.