A U q s l 2 -representation with no quantum symmetric algebra

Olivia Rossi-Doria

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1999)

  • Volume: 10, Issue: 1, page 5-9
  • ISSN: 1120-6330

Abstract

top
We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of U q s l 2 that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.

How to cite

top

Rossi-Doria, Olivia. "A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 5-9. <http://eudml.org/doc/252276>.

@article{Rossi1999,
abstract = {We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of \( \mathcal\{U\}\_\{q\} (\mathfrak\{sl\} (2)) \) that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.},
author = {Rossi-Doria, Olivia},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quantized enveloping algebra; Representation; Symmetric algebra},
language = {eng},
month = {3},
number = {1},
pages = {5-9},
publisher = {Accademia Nazionale dei Lincei},
title = {A \( \mathcal\{U\}\_\{q\} (\mathfrak\{sl\} (2)) \)-representation with no quantum symmetric algebra},
url = {http://eudml.org/doc/252276},
volume = {10},
year = {1999},
}

TY - JOUR
AU - Rossi-Doria, Olivia
TI - A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/3//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 1
SP - 5
EP - 9
AB - We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \) that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.
LA - eng
KW - Quantized enveloping algebra; Representation; Symmetric algebra
UR - http://eudml.org/doc/252276
ER -

References

top
  1. Drinfeld, V. G., Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258. Zbl0588.17015MR802128
  2. Drinfeld, V. G., Quantum groups. Proc. ICM, Berkeley1986, 1, 798-820. MR934283
  3. Jimbo, M., A q-difference analogue of U g and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69. Zbl0587.17004MR797001DOI10.1007/BF00704588
  4. Kassel, C., Quantum groups. Graduate Texts in Math., vol. 155, Springer-Verlag, New York1995. Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  5. Yu, N., Quantized universal enveloping algebra, the Yang-Baxter equation and invariants of links I. LOMI, preprint 1987, no. E-4-87. 
  6. Rosso, M., Finite-dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 117, 1988, 581-593. Zbl0651.17008MR953821

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.