Time and space Sobolev regularity of solutions to homogeneous parabolic equations
- Volume: 9, Issue: 2, page 89-94
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDi Blasio, Gabriella. "Time and space Sobolev regularity of solutions to homogeneous parabolic equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.2 (1998): 89-94. <http://eudml.org/doc/252283>.
@article{DiBlasio1998,
abstract = {We give necessary and sufficient conditions on the initial data such that the solutions of parabolic equations have a prescribed Sobolev regularity in time and space.},
author = {Di Blasio, Gabriella},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Parabolic equations; Sobolev regularity; Interpolation spaces; second-order uniformly elliptic operator in divergence form; necessary and sufficient conditions on the initial function; real interpolation space},
language = {eng},
month = {6},
number = {2},
pages = {89-94},
publisher = {Accademia Nazionale dei Lincei},
title = {Time and space Sobolev regularity of solutions to homogeneous parabolic equations},
url = {http://eudml.org/doc/252283},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Di Blasio, Gabriella
TI - Time and space Sobolev regularity of solutions to homogeneous parabolic equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/6//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 2
SP - 89
EP - 94
AB - We give necessary and sufficient conditions on the initial data such that the solutions of parabolic equations have a prescribed Sobolev regularity in time and space.
LA - eng
KW - Parabolic equations; Sobolev regularity; Interpolation spaces; second-order uniformly elliptic operator in divergence form; necessary and sufficient conditions on the initial function; real interpolation space
UR - http://eudml.org/doc/252283
ER -
References
top- Agmon, S., On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. Zbl0109.32701MR147774
- Amann, H., Dual semigroups and second order linear boundary value problems. Israel J. Math., 45, 1983, 225-254. Zbl0535.35017MR719122DOI10.1007/BF02774019
- Butzer, P. - Berens, H., Semigroups of operators and approximation. Springer-Verlag, New York1967. Zbl0164.43702MR230022
- Da Prato, G. - Grisvard, P., Maximal regularity for evolution equation by interpolation and extrapolation. J. Funct. Anal., 58, 1984, 107-124. Zbl0593.47041MR757990DOI10.1016/0022-1236(84)90034-X
- Di Blasio, G., Analytic semigroups generated by elliptic operators in and parabolic equations. Osaka J. Math., 28, 1991, 367-384. Zbl0787.35038MR1132171
- Di Blasio, G., Limiting case for interpolation spaces of holomorphic semigroups. Semigroup Forum, Springer, to appear. Zbl0941.47035
- Di Blasio, G., Sobolev regularity of solutions to homogeneous abstract parabolic equations. Preprint Dip. di Matematica «G. Castelnuovo», Roma1997.
- Ladyzenskaja, O. A. - Solonnikov, V. A. - Uralceva, N. N., Linear and Quasilinear Equations of Parabolic type. Amer. Math. Soc., 1968. Zbl0164.12302MR241822
- Pazy, A., Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sciences, 44, Springer, 1983. Zbl0516.47023MR710486DOI10.1007/978-1-4612-5561-1
- Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean -spaces. J. Math. Mech., 13, 1964, 407-479. Zbl0132.09402MR163159
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.