On a phase transition model of Penrose-Fife type
- Volume: 15, Issue: 3-4, page 169-181
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- BROKATE, M. - SPREKELS, J., Hysteresis and phase transitions. Springer-Verlag, NewYork1996. Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
- COLLI, P. - GILARDI, G. - ROCCA, E. - SCHIMPERNA, G., On a Penrose-Fife phase field model with inhomogeneous Neumann boundary condition for the temperature. Preprint IAN-CNR n. 1327, 2003, 1-21. Zbl1224.35222MR2054932
- COLLI, P. - LAURENÇOT, PH., Weak solutions to the Penrose-Fife phase field model for a class of admissible flux laws. Physica D, vol. 111, 1998, 311-334. Zbl0929.35062MR1601442DOI10.1016/S0167-2789(97)80018-8
- COLLI, P. - LAURENÇOT, PH. - SPREKELS, J., Global solution to the Penrose-Fife phase field model with special heat flux laws. In: P. ARGOUL - M. FRÉMOND - Q.S. NGUYEN (eds.), Variations of Domains and Free-Boundary Problems in Solid Mechanics. Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht1999, 181-188. MR1672241DOI10.1007/978-94-011-4738-5_21
- COLLI, P. - SPREKELS, J., On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl., vol. 169, 1995, 269-289. Zbl0852.35030MR1378478DOI10.1007/BF01759357
- GILARDI, G. - MARSON, A., On a Penrose-Fife type system with Dirichlet boundary conditions for the temperature. Math. Methods Appl. Sci., 26, 2003, 1303-1325. Zbl1029.82014MR2004103DOI10.1002/mma.423
- HORN, W. - LAURENÇOT, PH. - SPREKELS, J., Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature. Math. Methods Appl. Sci., vol. 19, 1996, 1053-1072. Zbl0859.35049MR1402815DOI10.1002/(SICI)1099-1476(19960910)19:13<1053::AID-MMA809>3.0.CO;2-S
- HORN, W. - SPREKELS, J. - ZHENG, S., Global existence for the Penrose-Fife phase-field model of Ising ferromagnets. Adv Math. Sci. Appl., vol. 6, 1996, 227-241. Zbl0858.35053MR1385769
- KENMOCHI, N. - KUBO, M., Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv Math. Sci. Appl., vol. 9, 1999, 499-521. Zbl0930.35037MR1690439
- KENMOCHI, N. - NIEZGÓDKA, M., Evolution equations of nonlinear variational inequalities arising from phase change problems. Nonlinear Analysis, TMA, vol. 22, 1994, 1163-1180. Zbl0827.35070MR1279139DOI10.1016/0362-546X(94)90235-6
- KENMOCHI, N. - NIEZGÓDKA, M., Systems of nonlinear parabolic equations for phase change problems. Adv Math. Sci. Appl., vol. 3, 1993/94, 89-117. Zbl0827.35015
- LAURENÇOT, PH., Solutions to a Penrose-Fife model of phase field type. J. Math. Anal. Appl., vol. 185, 1994, 262-274. Zbl0819.35159MR1283056DOI10.1006/jmaa.1994.1247
- LAURENÇOT, PH., Weak solutions to a Penrose-Fife model for phase transitions. Adv Math. Sci. Appl., vol. 5, 1995, 117-138. Zbl0829.35148MR1325962
- LAURENÇOT, PH., Weak solutions to a Penrose-Fife model with Fourier law for the temperature. J. Math. Anal. Appl., vol. 219, 1998, 331-343. Zbl0919.35137MR1606330DOI10.1006/jmaa.1997.5813
- PENROSE, O. - FIFE, P.C., Thermodinamically consistent models of phase field type for the kinetics of phase-transitions. Physica D, vol. 43, 1990, 44-62. Zbl0709.76001MR1060043DOI10.1016/0167-2789(90)90015-H
- SPREKELS, J. - ZHENG, S., Global smooth solutions to a thermodynamically consistent model of phase field type in higher space dimensions. J. Math. Anal. Appl., vol. 176, 1993, 200-223. Zbl0804.35063MR1222165DOI10.1006/jmaa.1993.1209
- VISINTIN, A., Models of phase transitions. Progress in Nonlinear Differential Equations, vol. 28, Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5
- ZHENG, S., Global smooth solutions to a thermodynamically consistent model of phase field type. Diff. Integral Eqns., vol. 5, 1992, 241-253. Zbl0768.35050