Morse index and blow-up points of solutions of some nonlinear problems
Khalil El Mehdi; Filomena Pacella
- Volume: 13, Issue: 2, page 101-105
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bahri, A. - Li, Y.Y. - Rey, O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Cal. Var. Partial Differential Equatios, 3, 1995, 67-93. Zbl0814.35032MR1384837DOI10.1007/BF01190892
- Gidas, B. - Spruck, J., A priori bounds for a positive solutions of nonlinear elliptic equation. Comm. Partial Differential Equation, 6, 1981, 883-901. Zbl0462.35041MR619749DOI10.1080/03605308108820196
- Gilbarg, D. - Trudinger, N.S., Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin-New York1983. Zbl0562.35001MR737190
- Grossi, M. - Molle, R., On the shape of the solutions of some semilinear elliptic problems. Preprint 2001. Zbl1136.35364MR1958020DOI10.1142/S0219199703000914
- Li, Y.Y., Prescribing scalar curvature on and related topics, Part I. J. Differential Equations, 120, 1995, 319-410. Zbl0827.53039MR1347349DOI10.1006/jdeq.1995.1115
- Pohozaev, S.I., Eigenfunctions of . Soviet. Math. Dokhl., 6, 1965, 1408-1411. Zbl0141.30202
- Rey, O., The question of interior blow-up for an elliptic neumann problem: the critical case. Preprint Ecole Polytechnique 2001. Zbl1066.35033
- Schoen, R., Courses at Stanford University (1988) and New-York University (1989). Unpublished.