Existence and regularity of solutions of the -system on wedges of
- Volume: 10, Issue: 4, page 271-278
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topZampieri, Giuseppe. "Existence and regularity of solutions of the \( \bar{\delta} \)-system on wedges of \( \mathbb{C}^{N} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.4 (1999): 271-278. <http://eudml.org/doc/252311>.
@article{Zampieri1999,
abstract = {For a wedge \( W \) of \( \mathbb\{C\}^\{N\} \), we introduce two conditions of weak \( q \)-pseudoconvexity, and prove that they entail solvability of the \( \bar\{\delta\} \)-system for forms of degree \( \ge q + 1 \) with coefficients in \( C^\{\infty\} (W) \) and \( C^\{\infty\} (\bar\{W\}) \) respectively. Existence and regularity for \( \bar\{\delta\} \) in \( W \) is treated by Hörmander [5, 6] (and also by Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in \( W \) is treated by Henkin [4] (strong \( q \)-pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant number of negative eigenvalues), and Zampieri [10] (more general \( q \)-pseudoconvexity and wedge type domains). This is an announcement of our papers [10, 11]; it contains refinements both in statements and proofs and, mainly, a parallel treatement of regularity in \( W \) and \( \bar\{W\} \). All our techniques strongly rely on the method of \( L^\{2\} \) estimates by Hörmander [5, 6].},
author = {Zampieri, Giuseppe},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {L2 estimates; Cauchy-Riemann system; C; R; structures; wedge; -pseudoconvex; -system; -estimates},
language = {eng},
month = {12},
number = {4},
pages = {271-278},
publisher = {Accademia Nazionale dei Lincei},
title = {Existence and regularity of solutions of the \( \bar\{\delta\} \)-system on wedges of \( \mathbb\{C\}^\{N\} \)},
url = {http://eudml.org/doc/252311},
volume = {10},
year = {1999},
}
TY - JOUR
AU - Zampieri, Giuseppe
TI - Existence and regularity of solutions of the \( \bar{\delta} \)-system on wedges of \( \mathbb{C}^{N} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/12//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 4
SP - 271
EP - 278
AB - For a wedge \( W \) of \( \mathbb{C}^{N} \), we introduce two conditions of weak \( q \)-pseudoconvexity, and prove that they entail solvability of the \( \bar{\delta} \)-system for forms of degree \( \ge q + 1 \) with coefficients in \( C^{\infty} (W) \) and \( C^{\infty} (\bar{W}) \) respectively. Existence and regularity for \( \bar{\delta} \) in \( W \) is treated by Hörmander [5, 6] (and also by Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in \( W \) is treated by Henkin [4] (strong \( q \)-pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity), Michel [8] (constant number of negative eigenvalues), and Zampieri [10] (more general \( q \)-pseudoconvexity and wedge type domains). This is an announcement of our papers [10, 11]; it contains refinements both in statements and proofs and, mainly, a parallel treatement of regularity in \( W \) and \( \bar{W} \). All our techniques strongly rely on the method of \( L^{2} \) estimates by Hörmander [5, 6].
LA - eng
KW - L2 estimates; Cauchy-Riemann system; C; R; structures; wedge; -pseudoconvex; -system; -estimates
UR - http://eudml.org/doc/252311
ER -
References
top- Airapetyan, R.A. - Henkin, G.M., Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of -functions. Uspekhi Mat. Nauk., 39 (3), 1984, 39-106. Zbl0589.32035MR747791
- Andreotti, A. - Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259. Zbl0106.05501MR150342
- Dufresnoy, A., Sur l’operateur et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier, 29 (1), 1979, 229-238. Zbl0387.32011MR526786
- Henkin, G.M., H. Lewy’s equation and analysis on pseudoconvex manifolds (Russian). I. Uspehi Mat. Nauk., 32 (3), 1977, 57-118. Zbl0358.35057MR454067
- Hörmander, L., estimates and existence theorems for the operator. Acta Math., 113, 1965, 89-152. Zbl0158.11002MR179443
- Hörmander, L., An introduction to complex analysis in several complex variables. Van Nostrand, Princeton, N.J.1966. Zbl0138.06203
- Kohn, J.J., Regularity at the boundary of the -Neumann problem. Proceedings of the National Academy of Sciences of the United States of America, 49, 1963, 206-213. Zbl0118.31101MR149510
- Michel, V., Sur la regularité du au bord d’un domaine de dont la forme de Levi a exactement valeurs propres strictement negatives. Math. Ann., 195, 1993, 131-165. MR1198845DOI10.1007/BF01444880
- Zampieri, G., -estimates with Levi-singular weight, and existence for . J. d’Analyse Math., 74, 1998, 99-112. Zbl0954.32025MR1631646DOI10.1007/BF02819447
- Zampieri, G., Solvability of with regularity up to the boundary on wedges of . Israel J. of Math., 1999, in press. MR1767934
- Zampieri, G., solvability of the system on wedges of . Preprint 1998. MR1737843DOI10.1006/jmaa.1999.6629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.