Three cylinder inequalities and unique continuation properties for parabolic equations
- Volume: 13, Issue: 2, page 107-120
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topVessella, Sergio. "Three cylinder inequalities and unique continuation properties for parabolic equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 107-120. <http://eudml.org/doc/252330>.
@article{Vessella2002,
abstract = {We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^\{\prime\})$, such that the plane $t = t^\{\prime\}$ has a non empty intersection with $S$.},
author = {Vessella, Sergio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Continuation of solutions; Stability estimates; Ill-posed Problem; continuation of solutions; stability estimates; ill-posed problem},
language = {eng},
month = {6},
number = {2},
pages = {107-120},
publisher = {Accademia Nazionale dei Lincei},
title = {Three cylinder inequalities and unique continuation properties for parabolic equations},
url = {http://eudml.org/doc/252330},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Vessella, Sergio
TI - Three cylinder inequalities and unique continuation properties for parabolic equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 107
EP - 120
AB - We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^{\prime})$, such that the plane $t = t^{\prime}$ has a non empty intersection with $S$.
LA - eng
KW - Continuation of solutions; Stability estimates; Ill-posed Problem; continuation of solutions; stability estimates; ill-posed problem
UR - http://eudml.org/doc/252330
ER -
References
top- Adolfsson, V. - Escauriaza, L., domains and unique continuation at the boundary. Comm. Pure Appl. Math., L, 1997, 935-969. Zbl0899.31004MR1466583DOI10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H
- Aronszajn, N. - Krzywicki, A. - Szarski, J., A unique continuation theorem for exterior differential forms on Riemannian manifold. Ark. for Matematik, 4, (34), 1962, 417-453. Zbl0107.07803MR140031
- Canuto, B. - Rosset, E. - Vessella, S., Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear. Zbl0992.35112MR1862557DOI10.1090/S0002-9947-01-02860-4
- Canuto, B. - Rosset, E. - Vessella, S., A stability result in the localization of cavities in a thermic conducting medium. Preprint n. 59, 2001, Laboratoire de Mathématiques Appliquées, Université de Versailles. Zbl1225.35255MR1925040DOI10.1051/cocv:2002066
- Li, Dè-yuan', An inequality for the parabolic operator. Sci. Sinica, 12, 1963, 1425-1467. MR173093
- Glagoleva, R.Ja., Some properties of solutions of a linear second order parabolic equation. Math. USSR-Sbornik, 3 (1), 1967, 41-67. Zbl0172.14601
- Hörmander, L., Uniqueness theorem for second order elliptic differential equations. Comm. Part. Diff. Equations, 8 (1), 1983, 21-64. Zbl0815.35063
- Lees, M. - Protter, M.H., Unique continuation for parabolic equations. Duke Math. J., 28, 1961, 369-382. Zbl0143.33301MR140840
- Lin, F.H., A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., XLIII, 1990, 127-136. Zbl0727.35063MR1024191DOI10.1002/cpa.3160430105
- Varin, A.A., Three-Cylinder theorem for certain class of semilinear parabolic equations. Mat. Zametki, 51, (1), 1992, 32-41. Zbl0780.35050MR1165278DOI10.1007/BF01229430
- Vessella, S., Carleman estimates, optimal three cylinder inequality and unique continuation properties for solutions to parabolic equations. Quaderno DiMaD, novembre 2001, 1-12. Zbl1024.35021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.