Three cylinder inequalities and unique continuation properties for parabolic equations

Sergio Vessella

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 2, page 107-120
  • ISSN: 1120-6330

Abstract

top
We prove the following unique continuation property. Let u be a solution of a second order linear parabolic equation and S a segment parallel to the t -axis. If u has a zero of order faster than any non constant and time independent polynomial at each point of S then u vanishes in each point, x , t , such that the plane t = t has a non empty intersection with S .

How to cite

top

Vessella, Sergio. "Three cylinder inequalities and unique continuation properties for parabolic equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 107-120. <http://eudml.org/doc/252330>.

@article{Vessella2002,
abstract = {We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^\{\prime\})$, such that the plane $t = t^\{\prime\}$ has a non empty intersection with $S$.},
author = {Vessella, Sergio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Continuation of solutions; Stability estimates; Ill-posed Problem; continuation of solutions; stability estimates; ill-posed problem},
language = {eng},
month = {6},
number = {2},
pages = {107-120},
publisher = {Accademia Nazionale dei Lincei},
title = {Three cylinder inequalities and unique continuation properties for parabolic equations},
url = {http://eudml.org/doc/252330},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Vessella, Sergio
TI - Three cylinder inequalities and unique continuation properties for parabolic equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 107
EP - 120
AB - We prove the following unique continuation property. Let $u$ be a solution of a second order linear parabolic equation and $S$ a segment parallel to the $t$-axis. If $u$ has a zero of order faster than any non constant and time independent polynomial at each point of $S$ then $u$ vanishes in each point, $(x,t^{\prime})$, such that the plane $t = t^{\prime}$ has a non empty intersection with $S$.
LA - eng
KW - Continuation of solutions; Stability estimates; Ill-posed Problem; continuation of solutions; stability estimates; ill-posed problem
UR - http://eudml.org/doc/252330
ER -

References

top
  1. Adolfsson, V. - Escauriaza, L., C 1 , α domains and unique continuation at the boundary. Comm. Pure Appl. Math., L, 1997, 935-969. Zbl0899.31004MR1466583DOI10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H
  2. Aronszajn, N. - Krzywicki, A. - Szarski, J., A unique continuation theorem for exterior differential forms on Riemannian manifold. Ark. for Matematik, 4, (34), 1962, 417-453. Zbl0107.07803MR140031
  3. Canuto, B. - Rosset, E. - Vessella, S., Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear. Zbl0992.35112MR1862557DOI10.1090/S0002-9947-01-02860-4
  4. Canuto, B. - Rosset, E. - Vessella, S., A stability result in the localization of cavities in a thermic conducting medium. Preprint n. 59, 2001, Laboratoire de Mathématiques Appliquées, Université de Versailles. Zbl1225.35255MR1925040DOI10.1051/cocv:2002066
  5. Li, Dè-yuan', An inequality for the parabolic operator. Sci. Sinica, 12, 1963, 1425-1467. MR173093
  6. Glagoleva, R.Ja., Some properties of solutions of a linear second order parabolic equation. Math. USSR-Sbornik, 3 (1), 1967, 41-67. Zbl0172.14601
  7. Hörmander, L., Uniqueness theorem for second order elliptic differential equations. Comm. Part. Diff. Equations, 8 (1), 1983, 21-64. Zbl0815.35063
  8. Lees, M. - Protter, M.H., Unique continuation for parabolic equations. Duke Math. J., 28, 1961, 369-382. Zbl0143.33301MR140840
  9. Lin, F.H., A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., XLIII, 1990, 127-136. Zbl0727.35063MR1024191DOI10.1002/cpa.3160430105
  10. Varin, A.A., Three-Cylinder theorem for certain class of semilinear parabolic equations. Mat. Zametki, 51, (1), 1992, 32-41. Zbl0780.35050MR1165278DOI10.1007/BF01229430
  11. Vessella, S., Carleman estimates, optimal three cylinder inequality and unique continuation properties for solutions to parabolic equations. Quaderno DiMaD, novembre 2001, 1-12. Zbl1024.35021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.