Shakedown theorems in poroplastic dynamics
Giuseppe Cocchetti; Giulio Maier
- Volume: 13, Issue: 1, page 43-53
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCocchetti, Giuseppe, and Maier, Giulio. "Shakedown theorems in poroplastic dynamics." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.1 (2002): 43-53. <http://eudml.org/doc/252331>.
@article{Cocchetti2002,
abstract = {The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.},
author = {Cocchetti, Giuseppe, Maier, Giulio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Shakedown; Poroplasticity; Dynamics; shakedown; poroplasticity; dynamics},
language = {eng},
month = {3},
number = {1},
pages = {43-53},
publisher = {Accademia Nazionale dei Lincei},
title = {Shakedown theorems in poroplastic dynamics},
url = {http://eudml.org/doc/252331},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Cocchetti, Giuseppe
AU - Maier, Giulio
TI - Shakedown theorems in poroplastic dynamics
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/3//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 1
SP - 43
EP - 53
AB - The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.
LA - eng
KW - Shakedown; Poroplasticity; Dynamics; shakedown; poroplasticity; dynamics
UR - http://eudml.org/doc/252331
ER -
References
top- Ceradini, G., Sull'adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche. Giornale del Genio Civile, 415, 1969, 239-258.
- Cocchetti, G. - Maier, G., Static shakedown theorems in piecewise linearized poroplasticity. Arch. Appl. Mech., 68, 1998, 651-661. Zbl0939.74057
- Cocchetti, G. - Maier, G., Shakedown analysis in poroplasticity by linear programming. Int. J. Num. Meth. Engng, 47(1-3), 2000, 141-168. Zbl0987.74064MR1744290DOI10.1002/(SICI)1097-0207(20000110/30)47:1/3<141::AID-NME765>3.3.CO;2-U
- Corigliano, A. - Maier, G. - Pycko, S., Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Sol. Struct., 32, 1995, 3145-3166. Zbl0879.73019MR1349947DOI10.1016/0020-7683(94)00265-X
- Corradi, L. - Maier, G., Inadaptation theorems in the dynamics of elastic, work-hardening structures. Ingenieur-Archiv, 43, 1973, 44-57. Zbl0271.73030MR413698
- Coussy, O., Mechanics of porous continua. John Wiley & Sons, Chichester1995. Zbl0838.73001
- Débordes, O. - Nayroles, B., Sur la théorie et le calcul à l’adaptation des structures élastoplastiques. J. Mécanique, 15, 1976, 1-53. Zbl0344.73040MR416192
- Fauchet, B. - Coussy, O. - Carrère, A. - Tardieu, B., Poroplastic analysis of concrete dams and their foundations. Dam Engineering, 2(3), 1992, 165-192.
- Gavarini, C., Sul rientro in fase elastica delle vibrazioni forzate elasto-plastiche. Giornale del Genio Civile, 1969, 251-261.
- Kamenjarzh, J. A., Limit analysis of solids and structures. CRC Press, New York1996. Zbl0859.73002MR1400889
- Koiter, W.T., General theorems for elastic-plastic solids. In: I.N. Sneddon - R. Hill (eds.)., Progress in Solid Mechanics. North-Holland, Amsterdam1960, 167-221. Zbl0098.37603MR112405
- König, J.A., Shakedown of elastic-plastic structures. Elsevier, Amsterdam1987.
- Lewis, R.W. - Schrefler, B.A., The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley & Sons, Chichester1998. Zbl0935.74004
- Maier, G. - Comi, C., Variational finite element modelling in poroplasticity. In: B.D. Reddy (ed.), Recent Developments in Computational and Applied Mechanics. CIMNE, Barcelona1997, 180-199. Zbl1071.74704
- Maier, G. - Novati, G., Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models. Int. J. Plasticity, 6, 1990, 551-572. Zbl0731.73022
- Maier, G. - Carvelli, V. - Cocchetti, G., On direct methods for shakedown and limit analysis. European Journal of Mechanics A/Solids, Special Issue, 19, 2000, S79-S100.
- Polizzotto, C., Dynamic shakedown by modal analysis. Meccanica, 19, 1984, 133-144. Zbl0546.73028MR767044DOI10.1007/BF01560461
- Polizzotto, C., On shakedown of structures under dynamic agencies. In: A. Sawczuk - C. Polizzotto (eds.), Inelastic Analysis Under Variable Loads. Cogras, Palermo1984, 5-29.
- D. Weichert - G. Maier (eds.), Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht2000.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.