A remark on a Theorem of J. G. Thompson

Bertram Huppert

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 3, page 145-148
  • ISSN: 1120-6330

Abstract

top
An important theorem by J. G. Thompson says that a finite group G is p -nilpotent if the prime p divides all degrees (larger than 1) of irreducible characters of G . Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary p -lenght, in which the lenght of any conjugacy class of non central elements is divisible by p .

How to cite

top

Huppert, Bertram. "A remark on a Theorem of J. G. Thompson." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.3 (1998): 145-148. <http://eudml.org/doc/252350>.

@article{Huppert1998,
abstract = {An important theorem by J. G. Thompson says that a finite group \( G \) is \( p \)-nilpotent if the prime \( p \) divides all degrees (larger than 1) of irreducible characters of \( G \). Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary \( p \)-lenght, in which the lenght of any conjugacy class of non central elements is divisible by \( p \).},
author = {Huppert, Bertram},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lenght of conjugacy classes; p-lenght; finite groups; -solvable groups; -lengths; transitive permutation groups},
language = {eng},
month = {9},
number = {3},
pages = {145-148},
publisher = {Accademia Nazionale dei Lincei},
title = {A remark on a Theorem of J. G. Thompson},
url = {http://eudml.org/doc/252350},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Huppert, Bertram
TI - A remark on a Theorem of J. G. Thompson
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/9//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 3
SP - 145
EP - 148
AB - An important theorem by J. G. Thompson says that a finite group \( G \) is \( p \)-nilpotent if the prime \( p \) divides all degrees (larger than 1) of irreducible characters of \( G \). Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary \( p \)-lenght, in which the lenght of any conjugacy class of non central elements is divisible by \( p \).
LA - eng
KW - Lenght of conjugacy classes; p-lenght; finite groups; -solvable groups; -lengths; transitive permutation groups
UR - http://eudml.org/doc/252350
ER -

References

top
  1. Thompson, J. G., Normal p -complements and irreducible characters. J. Algebra, 14, 1970, 129-134. Zbl0205.32606MR252499

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.