A remark on a Theorem of J. G. Thompson
- Volume: 9, Issue: 3, page 145-148
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topHuppert, Bertram. "A remark on a Theorem of J. G. Thompson." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.3 (1998): 145-148. <http://eudml.org/doc/252350>.
@article{Huppert1998,
abstract = {An important theorem by J. G. Thompson says that a finite group \( G \) is \( p \)-nilpotent if the prime \( p \) divides all degrees (larger than 1) of irreducible characters of \( G \). Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary \( p \)-lenght, in which the lenght of any conjugacy class of non central elements is divisible by \( p \).},
author = {Huppert, Bertram},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lenght of conjugacy classes; p-lenght; finite groups; -solvable groups; -lengths; transitive permutation groups},
language = {eng},
month = {9},
number = {3},
pages = {145-148},
publisher = {Accademia Nazionale dei Lincei},
title = {A remark on a Theorem of J. G. Thompson},
url = {http://eudml.org/doc/252350},
volume = {9},
year = {1998},
}
TY - JOUR
AU - Huppert, Bertram
TI - A remark on a Theorem of J. G. Thompson
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/9//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 3
SP - 145
EP - 148
AB - An important theorem by J. G. Thompson says that a finite group \( G \) is \( p \)-nilpotent if the prime \( p \) divides all degrees (larger than 1) of irreducible characters of \( G \). Unlike many other cases, this theorem does not allow a similar statement for conjugacy classes. For we construct solvable groups of arbitrary \( p \)-lenght, in which the lenght of any conjugacy class of non central elements is divisible by \( p \).
LA - eng
KW - Lenght of conjugacy classes; p-lenght; finite groups; -solvable groups; -lengths; transitive permutation groups
UR - http://eudml.org/doc/252350
ER -
References
top- Thompson, J. G., Normal -complements and irreducible characters. J. Algebra, 14, 1970, 129-134. Zbl0205.32606MR252499
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.