Contact and conformal maps on Iwasawa N groups

Michael Cowling; Filippo De Mari; Adam Korányi; Hans Martin Reimann

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2002)

  • Volume: 13, Issue: 3-4, page 219-232
  • ISSN: 1120-6330

Abstract

top
The action of the conformal group O 1 , n + 1 on R n may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a C 4 map between domains U and V in R n whose differential is a (variable) multiple of a (variable) isometry at each point of U is the restriction to U of a transformation x g x , for some g in O 1 , n + 1 . In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group G on the space G / P , where P is a parabolic subgroup. We solve this problem for the cases where G is S L ( 3 , R or S p 2 , R and P is a minimal parabolic subgroup.

How to cite

top

Cowling, Michael, et al. "Contact and conformal maps on Iwasawa N groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 219-232. <http://eudml.org/doc/252360>.

@article{Cowling2002,
abstract = {The action of the conformal group $O(1,n + 1)$ on $\mathbb\{R\}^\{n\} \cup \\{\infty\\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^\{4\}$ map between domains $U$ and $V$ in $\mathbb\{R\}^\{n\}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb\{R\})$ or $Sp(2,\mathbb\{R\})$ and $P$ is a minimal parabolic subgroup.},
author = {Cowling, Michael, De Mari, Filippo, Korányi, Adam, Reimann, Hans Martin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {semisimple Lie group; contact map; conformal map},
language = {eng},
month = {12},
number = {3-4},
pages = {219-232},
publisher = {Accademia Nazionale dei Lincei},
title = {Contact and conformal maps on Iwasawa N groups},
url = {http://eudml.org/doc/252360},
volume = {13},
year = {2002},
}

TY - JOUR
AU - Cowling, Michael
AU - De Mari, Filippo
AU - Korányi, Adam
AU - Reimann, Hans Martin
TI - Contact and conformal maps on Iwasawa N groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 219
EP - 232
AB - The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
LA - eng
KW - semisimple Lie group; contact map; conformal map
UR - http://eudml.org/doc/252360
ER -

References

top
  1. Bertram, W., The geometry of Jordan and Lie structures. Lecture Notes in Math., vol. 1754, Springer-Verlag, Berlin-Heidelberg-New York2001. Zbl1014.17024MR1809879DOI10.1007/b76884
  2. Bertram, W. - Hilgert, J., Characterization of the Kantor-Koecher-Tits algebra by a generalized Ahlfors operator. J. Lie Theory, vol. 11, n. 2, 2001, 415-426. Zbl1049.53037MR1851798
  3. Gehring, F.W., Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., vol. 103, 1962, 353-393. Zbl0113.05805MR139735
  4. Gindikin, S. - Kaneyuki, S., On the automorphism group of the generalized conformal structure of a symmetric R -space. Differential Geom. Appl., vol. 8, n. 1, 1998, 21-33. Zbl0914.53029MR1601542DOI10.1016/S0926-2245(97)00015-6
  5. Goncharov, A.B., Generalized conformal structures on manifolds. Selected translations. Selecta Math. Soviet., vol. 6, n. 4, 1987, 307-340. Zbl0632.53038MR925263
  6. Korányi, A. - Reimann, H.M., Quasiconformal mappings on the Heisenberg group. Invent. Math., vol. 80, n. 2, 1985, 309-338. Zbl0567.30017MR788413DOI10.1007/BF01388609
  7. Nevanlinna, R., On differentiable mappings. In: R. Nevanlinna et al. (eds.), Analytic functions. Princeton Math. Series, 24, Princeton Univ. Press, Princeton, N.J.1960, 3-9. Zbl0100.35701MR116280
  8. Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), vol. 129, n. 1, 1989, 1-60. Zbl0678.53042MR979599DOI10.2307/1971484
  9. Tanaka, N., On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ., vol. 10, 1970, 1-82. Zbl0206.50503MR266258
  10. Yamaguchi, K., Differential systems associated with simple graded Lie algebras. In: Progress in differential geometry. Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo1993, 413-494. Zbl0812.17018MR1274961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.