Contact and conformal maps on Iwasawa N groups
Michael Cowling; Filippo De Mari; Adam Korányi; Hans Martin Reimann
- Volume: 13, Issue: 3-4, page 219-232
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCowling, Michael, et al. "Contact and conformal maps on Iwasawa N groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.3-4 (2002): 219-232. <http://eudml.org/doc/252360>.
@article{Cowling2002,
abstract = {The action of the conformal group $O(1,n + 1)$ on $\mathbb\{R\}^\{n\} \cup \\{\infty\\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^\{4\}$ map between domains $U$ and $V$ in $\mathbb\{R\}^\{n\}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb\{R\})$ or $Sp(2,\mathbb\{R\})$ and $P$ is a minimal parabolic subgroup.},
author = {Cowling, Michael, De Mari, Filippo, Korányi, Adam, Reimann, Hans Martin},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {semisimple Lie group; contact map; conformal map},
language = {eng},
month = {12},
number = {3-4},
pages = {219-232},
publisher = {Accademia Nazionale dei Lincei},
title = {Contact and conformal maps on Iwasawa N groups},
url = {http://eudml.org/doc/252360},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Cowling, Michael
AU - De Mari, Filippo
AU - Korányi, Adam
AU - Reimann, Hans Martin
TI - Contact and conformal maps on Iwasawa N groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/12//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 3-4
SP - 219
EP - 232
AB - The action of the conformal group $O(1,n + 1)$ on $\mathbb{R}^{n} \cup \{\infty\}$ may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a $C^{4}$ map between domains $U$ and $V$ in $\mathbb{R}^{n}$ whose differential is a (variable) multiple of a (variable) isometry at each point of $U$ is the restriction to $U$ of a transformation $x \rightarrow g \cdot x$, for some $g$ in $O(1,n + 1)$. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group $G$ on the space $G/P$ , where $P$ is a parabolic subgroup. We solve this problem for the cases where $G$ is $SL(3,\mathbb{R})$ or $Sp(2,\mathbb{R})$ and $P$ is a minimal parabolic subgroup.
LA - eng
KW - semisimple Lie group; contact map; conformal map
UR - http://eudml.org/doc/252360
ER -
References
top- Bertram, W., The geometry of Jordan and Lie structures. Lecture Notes in Math., vol. 1754, Springer-Verlag, Berlin-Heidelberg-New York2001. Zbl1014.17024MR1809879DOI10.1007/b76884
- Bertram, W. - Hilgert, J., Characterization of the Kantor-Koecher-Tits algebra by a generalized Ahlfors operator. J. Lie Theory, vol. 11, n. 2, 2001, 415-426. Zbl1049.53037MR1851798
- Gehring, F.W., Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., vol. 103, 1962, 353-393. Zbl0113.05805MR139735
- Gindikin, S. - Kaneyuki, S., On the automorphism group of the generalized conformal structure of a symmetric -space. Differential Geom. Appl., vol. 8, n. 1, 1998, 21-33. Zbl0914.53029MR1601542DOI10.1016/S0926-2245(97)00015-6
- Goncharov, A.B., Generalized conformal structures on manifolds. Selected translations. Selecta Math. Soviet., vol. 6, n. 4, 1987, 307-340. Zbl0632.53038MR925263
- Korányi, A. - Reimann, H.M., Quasiconformal mappings on the Heisenberg group. Invent. Math., vol. 80, n. 2, 1985, 309-338. Zbl0567.30017MR788413DOI10.1007/BF01388609
- Nevanlinna, R., On differentiable mappings. In: R. Nevanlinna et al. (eds.), Analytic functions. Princeton Math. Series, 24, Princeton Univ. Press, Princeton, N.J.1960, 3-9. Zbl0100.35701MR116280
- Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), vol. 129, n. 1, 1989, 1-60. Zbl0678.53042MR979599DOI10.2307/1971484
- Tanaka, N., On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ., vol. 10, 1970, 1-82. Zbl0206.50503MR266258
- Yamaguchi, K., Differential systems associated with simple graded Lie algebras. In: Progress in differential geometry. Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo1993, 413-494. Zbl0812.17018MR1274961
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.