Discreteness of the spectrum for some differential operators with unbounded coefficients in
Giorgio Metafune; Diego Pallara
- Volume: 11, Issue: 1, page 9-19
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMetafune, Giorgio, and Pallara, Diego. "Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 9-19. <http://eudml.org/doc/252372>.
@article{Metafune2000,
abstract = {We give sufficient conditions for the discreteness of the spectrum of differential operators of the form \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^\{2\}\_\{\mu\}(\mathbb\{R\}^\{n\}) \) where \( d \mu(x) = e^\{-F(x)\} dx \) and for Schrödinger operators in \( L^\{2\}(\mathbb\{R\}^\{n\}) \). Our conditions are also necessary in the case of polynomial coefficients.},
author = {Metafune, Giorgio, Pallara, Diego},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular differential operators; Discrete spectrum; Schrödinger operators; Sobolev embeddings},
language = {eng},
month = {3},
number = {1},
pages = {9-19},
publisher = {Accademia Nazionale dei Lincei},
title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb\{R\}^\{n\} \)},
url = {http://eudml.org/doc/252372},
volume = {11},
year = {2000},
}
TY - JOUR
AU - Metafune, Giorgio
AU - Pallara, Diego
TI - Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 9
EP - 19
AB - We give sufficient conditions for the discreteness of the spectrum of differential operators of the form \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^{2}_{\mu}(\mathbb{R}^{n}) \) where \( d \mu(x) = e^{-F(x)} dx \) and for Schrödinger operators in \( L^{2}(\mathbb{R}^{n}) \). Our conditions are also necessary in the case of polynomial coefficients.
LA - eng
KW - Singular differential operators; Discrete spectrum; Schrödinger operators; Sobolev embeddings
UR - http://eudml.org/doc/252372
ER -
References
top- Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
- Da Prato, G. - Zabczyk, J., Ergodicity for infinite dimensional systems. Cambridge U. P., 1996. Zbl0849.60052MR1417491DOI10.1017/CBO9780511662829
- Davies, E. B., Heat kernels and spectral theory. Cambridge U. P., 1989. Zbl0699.35006MR990239DOI10.1017/CBO9780511566158
- Davies, E. B., Spectral theory and differential operators. Cambridge U. P., 1995. Zbl0893.47004MR1349825DOI10.1017/CBO9780511623721
- Davies, E. B. - Simon, B., Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. Zbl0568.47034MR766493DOI10.1016/0022-1236(84)90076-4
- Davies, E. B. - Simon, B., properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. Zbl0613.47039MR819177DOI10.1016/0022-1236(86)90019-4
- Edmunds, D. E. - Evans, W. D., Spectral theory and differential operators. Oxford U.P., 1990. Zbl0664.47014
- Fefferman, C. L., The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. Zbl0526.35080MR707957DOI10.1090/S0273-0979-1983-15154-6
- Kondrat'ev, V. - Shubin, M., Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint.
- Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. Zbl0887.35062MR1475774
- Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. Zbl0890.35030MR1389786DOI10.1090/S0002-9947-97-01802-3
- Lunardi, A. - Vespri, V., Generation of smoothing semigroups by elliptic operators with unbounded coefficients in . Rend. Ist. Mat. Trieste, 28, 1997, 251-279. Zbl0899.35027MR1602271
- Lunardi, A. - Vespri, V., Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. Zbl0887.47034MR1472521
- Metafune, G. - Pallara, D., Trace formulas for some singular differential operators and applications. Math. Nach., to appear. Zbl0961.34073MR1743484DOI10.1002/(SICI)1522-2616(200003)211:1<127::AID-MANA127>3.3.CO;2-1
- Molcanov, A. M., Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). MR57422
- Reed, M. - Simon, B., Methods of modern mathematical physics IV. Academic Press, 1978. Zbl0401.47001MR751959
- Simon, B., Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. Zbl0524.35002
- Simon, B., Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. Zbl0547.35039MR701264DOI10.1016/0003-4916(83)90057-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.