Discreteness of the spectrum for some differential operators with unbounded coefficients in R n

Giorgio Metafune; Diego Pallara

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2000)

  • Volume: 11, Issue: 1, page 9-19
  • ISSN: 1120-6330

Abstract

top
We give sufficient conditions for the discreteness of the spectrum of differential operators of the form A u = - u + F , u in L μ 2 R n where d μ x = e - F x d x and for Schrödinger operators in L 2 R n . Our conditions are also necessary in the case of polynomial coefficients.

How to cite

top

Metafune, Giorgio, and Pallara, Diego. "Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 11.1 (2000): 9-19. <http://eudml.org/doc/252372>.

@article{Metafune2000,
abstract = {We give sufficient conditions for the discreteness of the spectrum of differential operators of the form \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^\{2\}\_\{\mu\}(\mathbb\{R\}^\{n\}) \) where \( d \mu(x) = e^\{-F(x)\} dx \) and for Schrödinger operators in \( L^\{2\}(\mathbb\{R\}^\{n\}) \). Our conditions are also necessary in the case of polynomial coefficients.},
author = {Metafune, Giorgio, Pallara, Diego},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular differential operators; Discrete spectrum; Schrödinger operators; Sobolev embeddings},
language = {eng},
month = {3},
number = {1},
pages = {9-19},
publisher = {Accademia Nazionale dei Lincei},
title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb\{R\}^\{n\} \)},
url = {http://eudml.org/doc/252372},
volume = {11},
year = {2000},
}

TY - JOUR
AU - Metafune, Giorgio
AU - Pallara, Diego
TI - Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2000/3//
PB - Accademia Nazionale dei Lincei
VL - 11
IS - 1
SP - 9
EP - 19
AB - We give sufficient conditions for the discreteness of the spectrum of differential operators of the form \( A u = - \triangle u + ( \nabla F,\nabla u) \) in \( L^{2}_{\mu}(\mathbb{R}^{n}) \) where \( d \mu(x) = e^{-F(x)} dx \) and for Schrödinger operators in \( L^{2}(\mathbb{R}^{n}) \). Our conditions are also necessary in the case of polynomial coefficients.
LA - eng
KW - Singular differential operators; Discrete spectrum; Schrödinger operators; Sobolev embeddings
UR - http://eudml.org/doc/252372
ER -

References

top
  1. Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. Zbl0846.47004MR1343161DOI10.1006/jfan.1995.1084
  2. Da Prato, G. - Zabczyk, J., Ergodicity for infinite dimensional systems. Cambridge U. P., 1996. Zbl0849.60052MR1417491DOI10.1017/CBO9780511662829
  3. Davies, E. B., Heat kernels and spectral theory. Cambridge U. P., 1989. Zbl0699.35006MR990239DOI10.1017/CBO9780511566158
  4. Davies, E. B., Spectral theory and differential operators. Cambridge U. P., 1995. Zbl0893.47004MR1349825DOI10.1017/CBO9780511623721
  5. Davies, E. B. - Simon, B., Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. Zbl0568.47034MR766493DOI10.1016/0022-1236(84)90076-4
  6. Davies, E. B. - Simon, B., L 1 properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. Zbl0613.47039MR819177DOI10.1016/0022-1236(86)90019-4
  7. Edmunds, D. E. - Evans, W. D., Spectral theory and differential operators. Oxford U.P., 1990. Zbl0664.47014
  8. Fefferman, C. L., The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. Zbl0526.35080MR707957DOI10.1090/S0273-0979-1983-15154-6
  9. Kondrat'ev, V. - Shubin, M., Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint. 
  10. Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. Zbl0887.35062MR1475774
  11. Lunardi, A., On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. Zbl0890.35030MR1389786DOI10.1090/S0002-9947-97-01802-3
  12. Lunardi, A. - Vespri, V., Generation of smoothing semigroups by elliptic operators with unbounded coefficients in R n . Rend. Ist. Mat. Trieste, 28, 1997, 251-279. Zbl0899.35027MR1602271
  13. Lunardi, A. - Vespri, V., Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. Zbl0887.47034MR1472521
  14. Metafune, G. - Pallara, D., Trace formulas for some singular differential operators and applications. Math. Nach., to appear. Zbl0961.34073MR1743484DOI10.1002/(SICI)1522-2616(200003)211:1<127::AID-MANA127>3.3.CO;2-1
  15. Molcanov, A. M., Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). MR57422
  16. Reed, M. - Simon, B., Methods of modern mathematical physics IV. Academic Press, 1978. Zbl0401.47001MR751959
  17. Simon, B., Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. Zbl0524.35002
  18. Simon, B., Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. Zbl0547.35039MR701264DOI10.1016/0003-4916(83)90057-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.