On the regularity of abstract Cauchy problems and boundary value problems

Philippe Clément; Sylvie Guerre-Delabrière

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1998)

  • Volume: 9, Issue: 4, page 245-266
  • ISSN: 1120-6330

Abstract

top
Maximal regularity (in L p -sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.

How to cite

top

Clément, Philippe, and Guerre-Delabrière, Sylvie. "On the regularity of abstract Cauchy problems and boundary value problems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 9.4 (1998): 245-266. <http://eudml.org/doc/252392>.

@article{Clément1998,
abstract = {Maximal regularity (in \( L\_\{p\} \)-sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.},
author = {Clément, Philippe, Guerre-Delabrière, Sylvie},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Abstract differential equations; UMD-spaces; Maximal regularity; abstract differential equations; maximal regularity; Cauchy problems; boundary value problems},
language = {eng},
month = {12},
number = {4},
pages = {245-266},
publisher = {Accademia Nazionale dei Lincei},
title = {On the regularity of abstract Cauchy problems and boundary value problems},
url = {http://eudml.org/doc/252392},
volume = {9},
year = {1998},
}

TY - JOUR
AU - Clément, Philippe
AU - Guerre-Delabrière, Sylvie
TI - On the regularity of abstract Cauchy problems and boundary value problems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1998/12//
PB - Accademia Nazionale dei Lincei
VL - 9
IS - 4
SP - 245
EP - 266
AB - Maximal regularity (in \( L_{p} \)-sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.
LA - eng
KW - Abstract differential equations; UMD-spaces; Maximal regularity; abstract differential equations; maximal regularity; Cauchy problems; boundary value problems
UR - http://eudml.org/doc/252392
ER -

References

top
  1. Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Math., 21, 1983, 163-168. Zbl0533.46008MR727340DOI10.1007/BF02384306
  2. Bu, S. - Ph, - Guerre-Delabrière, S., Regularity of pairs of positive operators. Ill. J. of Maths., 1998, to appear. Zbl0905.47002MR1631220
  3. Burkholder, R., A geometrical characterization of Banach spaces in which martingale differences are unconditional. Ann. Prob., 9, 1981, 997-1011. Zbl0474.60036MR632972
  4. Butzer, P. - Berens, H., Semi-groups of operators and approximation. Springer-Verlag, NY Inc., 1967. Zbl0164.43702MR230022
  5. Cannarsa, P. - Vespri, V., On maximal L p -regularity for the abstract Cauchy Problems. Boll. U.M.I., 1986, 165-175. Zbl0608.35027MR841623
  6. Ph, - Grisvard, P., Somme d’opérateurs et régularité L p dans les problèmes aux limites. CRAS Paris, t. 314, 1992, 821-824. Zbl0773.47033MR1166054
  7. Clément, Ph. - Guerre-Delabrière, S., On the regularity of abstract Cauchy problems of order one and boundary value problems of order two. Publ. Math. Univ. P. et M. Curie (Paris 6), 119, 1997, 1-44. Zbl0890.35001
  8. Coulhon, T. - Lamberton, D., Régularité L p pour les equations d’évolution. Séminaire d’analyse fonctionnelle Paris VI-VII, 1984-85, 155-165. Zbl0641.47046MR941819
  9. Da Prato, G. - Grisvard, P., Sommes d’opérateurs linéaires et equations différentielles opérationnelles. J. Math. pures et appl., 54, 1975, 305-387. Zbl0315.47009MR442749
  10. Da Prato, G. - Grisvard, P., Equations d’évolution abstraites non linéaires de type parabolique. Ann. Math. Pura Appl., 120, 1979, 329-396. Zbl0471.35036MR551075DOI10.1007/BF02411952
  11. Da Prato, G. - Sinestrari, E., Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa, cl. Sci., 4, 14, 1987, 185-344. Zbl0652.34069MR939631
  12. De Simon, L., Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova, 1964, 205-223. Zbl0196.44803MR176192
  13. Di Blasio, G., Linear parabolic evolution equation in L p -spaces. Annali Mat., 138, 1984, 55-104. Zbl0568.35047MR779538DOI10.1007/BF01762539
  14. Dore, G., L p -regularity of abstract differential equations. Lecture notes in math., 1540, Springer-Verlag, 1993, 25-38. Zbl0818.47044MR1225809DOI10.1007/BFb0085472
  15. Dore, G. - Venni, A., On the closedness of the sum of two closed operators. Math. Zeitschr., 196, 1987, 189-201. Zbl0615.47002MR910825DOI10.1007/BF01163654
  16. Giga, Y. - Sohr, H., Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. Hokkaido University Preprint, series in Mathematics, series 60, Nov. 1989, 38 pp. Zbl0739.35067MR1138838DOI10.1016/0022-1236(91)90136-S
  17. Grisvard, P., Equations différentielles abstraites. Ann. Sc. Ecole Normale Sup., 2, 1969, 311-395. Zbl0193.43502MR270209
  18. Guerre-Delabrière, S., L p -regularity of the Cauchy problem and the geometry of Banach spaces. Ill. J. of Maths., 39, 1995, 556-566. Zbl0845.47028MR1361519
  19. Hieber, M. - Prüss, J., Heat kernel and maximal L p - L q estimates for parabolic evolution equations. Comm. PDE, 22, 1997, 1647-1669. Zbl0886.35030MR1469585DOI10.1080/03605309708821314
  20. Komatsu, H., Fractional powers of operators. Pacific J. of Math., 19, 1966, 285-346. Zbl0154.16104MR201985
  21. Le Merdy, C., Counterexamples on L p -Maximal regularity. Preprint 
  22. Nagel, R., One-parameter semi groups of positive operators. Lecture notes in math., 1184, Springer-Verlag, Berlin-New York1986. Zbl0585.47030
  23. Pazy, A., Semi groups of linear operators and applications to partial differential equations. Springer-Verlag, New York1983. Zbl0516.47023
  24. Prüss, J. - Sohr, H., On operators with bounded imaginary powers in Banach spaces. Math. Z., 203, 1990, 429-452. Zbl0665.47015MR1038710DOI10.1007/BF02570748
  25. Sobolevskii, P. E., Fractional powers of coercively positive sums of operators. Soviet Math. Dokl., 16, 1975. Zbl0333.47010MR482314
  26. Sobolevskii, P. E., Coerciveness inequalities for abstract parabolic equations. Dokl. Acad. Nauk, 157, 1964, 52-55. Zbl0149.36001MR166487
  27. Tanabe, H., Equations of Evolution. Pitman, London, San Francisco, Melbourne1979. Zbl0417.35003MR533824
  28. Triebel, H., Interpolation theory, function spaces, differential operators. North Holland, 1978. Zbl0387.46032MR503903
  29. Von Wahl, W., The equation u + A u = f in a Hilbert space and L p -estimates for parabolic equations. J. London Math. Soc., 25, 1982, 483-497. Zbl0493.35050MR657505DOI10.1112/jlms/s2-25.3.483
  30. Yosida, K., Functional Analysis. Springer-Verlag, New York1971. Zbl0365.46001
  31. Zimmermann, F., On vector-valued Fourier multiplier theorems. Studia Math., 93, 1989, 201-222. Zbl0686.42008MR1030488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.