Diffusion and cross-diffusion in pattern formation

Wei-Ming Ni

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 197-214
  • ISSN: 1120-6330

Abstract

top
We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as 2 × 2 systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.

How to cite

top

Ni, Wei-Ming. "Diffusion and cross-diffusion in pattern formation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 197-214. <http://eudml.org/doc/252393>.

@article{Ni2004,
abstract = {We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as $2 \times 2$ systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.},
author = {Ni, Wei-Ming},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Diffusion; Cross-diffusion; Shadow systems; Steady states; Stability},
language = {eng},
month = {12},
number = {3-4},
pages = {197-214},
publisher = {Accademia Nazionale dei Lincei},
title = {Diffusion and cross-diffusion in pattern formation},
url = {http://eudml.org/doc/252393},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Ni, Wei-Ming
TI - Diffusion and cross-diffusion in pattern formation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 197
EP - 214
AB - We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as $2 \times 2$ systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.
LA - eng
KW - Diffusion; Cross-diffusion; Shadow systems; Steady states; Stability
UR - http://eudml.org/doc/252393
ER -

References

top
  1. AMANN, H., Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. Integral Eqns., 3, 1990, 13-75. Zbl0729.35062MR1014726
  2. AMANN, H., Nonhomogeneous linear quasilinear elliptic and parabolic boundary value problems. In: H. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart-Leipzig1993, 9-126. Zbl0810.35037MR1242579
  3. AMANN, H., Supersolution, monotone iteration and stability. J. Diff. Eqns., 21, 1976, 365-377. Zbl0319.35039MR407451
  4. CANTRELL, R.S. - COSNER, C., Spatial ecology via reaction-diffusion equations. John Wiley and Sons, 2003. Zbl1087.92058MR2191264DOI10.1002/0470871296
  5. CASTEN, R.G. - HOLLAND, C.J., Instability results for a reaction-diffusion equation with Neumann boundary conditions. J. Diff. Eqns., 27, 1978, 266-273. Zbl0338.35055MR480282DOI10.1016/0022-0396(78)90033-5
  6. CHOI, Y.-S. - LUI, R. - YAMADA, Y., Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 719-730. Zbl1047.35054MR2018876DOI10.3934/dcds.2004.10.719
  7. GIERER, A. - MEINHARDT, H., A theory of biological pattern formation. Kybernetik, 12, 1972, 30-39. 
  8. HALE, J.K. - SAKAMOTO, K., Shadow systems and attractors in reaction-diffusion equations. Appl. Anal., 32, 1989, 287-303. Zbl0667.34072MR1030101DOI10.1080/00036818908839855
  9. HALE, J.K. - VEGAS, J.M., A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal., 86, 1984, 99-123. Zbl0569.35048MR751304DOI10.1007/BF00275730
  10. HUTCHINSON, G.E., An introduction to population ecology. Yale University Press, New Haven, CT1978. Zbl0414.92026MR492532
  11. JIMBO, S. - MORITA, Y., Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels. Comm. PDE, 17, 1992, 523-552. Zbl0766.35029MR1163435DOI10.1080/03605309208820852
  12. LE, D., Cross diffusion systems on n spatial dimensional domains. Indiana Univ. Math. J., 51, 2002, 625-643. Zbl1046.35061MR1911048DOI10.1512/iumj.2002.51.2198
  13. LIN, C.-S. - NI, W.-M., Stability of solutions of semilinear diffusion equations. Preprint, 1986. 
  14. LOU, Y. - NI, W.-M., Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqns., 131, 1996, 79-131. Zbl0867.35032MR1415047DOI10.1006/jdeq.1996.0157
  15. LOU, Y. - NI, W.-M., Diffusion vs cross diffusion: An elliptic approach. J. Diff. Eqns., 154, 1999, 157-190. Zbl0934.35040MR1685622DOI10.1006/jdeq.1998.3559
  16. LOU, Y. - NI, W.-M. - WU, Y., On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 4, 1998, 193-203. Zbl0960.35049MR1616969DOI10.3934/dcds.1998.4.193
  17. LOU, Y. - NI, W.-M. - YOTSUTANI, S., On a limiting system in the Lotka-Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 435-458. Zbl1174.35360MR2026204DOI10.3934/dcds.2004.10.435
  18. MATANO, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS, 15, 1979, 401-454. Zbl0445.35063MR555661DOI10.2977/prims/1195188180
  19. NI, W.-M., Some aspects of semilinear ellitpic equations. Lecture Notes, National Tsinghua Univ., Hsinchu-Taiwan-China1987. Zbl0676.35026
  20. NI, W.-M., Diffusion, cross-diffusion, and their spike-layer steady states. Notices of Amer. Math. Soc., 45, 1998, 9-18. Zbl0917.35047MR1490535
  21. NI, W.-M. - POLACIK, P. - YANAGIDA, E., Montonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc., 353, 2001, 5057-5069. Zbl0981.35018MR1852094DOI10.1090/S0002-9947-01-02880-X
  22. NI, W.-M. - TAKAGI, I., On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc., 297, 1986, 351-368. Zbl0635.35031MR849484DOI10.2307/2000473
  23. NI, W.-M. - TAKAGI, I., On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 44, 1991, 819-851. Zbl0754.35042MR1115095DOI10.1002/cpa.3160440705
  24. NI, W.-M. - TAKAGI, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J., 70, 1993, 247-281. Zbl0796.35056MR1219814DOI10.1215/S0012-7094-93-07004-4
  25. NI, W.-M. - TAKAGI, I., Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Industrial Appl. Math., 12, 1995, 327-365. Zbl0843.35006MR1337211DOI10.1007/BF03167294
  26. NI, W.-M. - TAKAGI, I. - YANAGIDA, E., Stability analysis of point-condensation solutions to a reaction-diffusion system. Tokoku Math. J., submitted. 
  27. NI, W.-M. - TAKAGI, I. - YANAGIDA, E., Stability of least-energy patterns in a shadow system of an activator-inhibitor model. Japan J. Industrial Appl. Math., 18, 2001, 259-272. Zbl1200.35172MR1842911DOI10.1007/BF03168574
  28. POZIO, M.A. - TESEI, A., Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlinear Analysis, 14, 1990, 657-689. Zbl0716.35034MR1049787DOI10.1016/0362-546X(90)90043-G
  29. POZIO, M.A. - TESEI, A., Invariant rectangles and strongly coupled semilinear paraboli systems. Forum Math., 2, 1990, 175-202. Zbl0701.35091MR1042618DOI10.1515/form.1990.2.175
  30. SATTINGER, D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 1972, 979-1000. Zbl0223.35038MR299921
  31. SHIGESADA, N. - KAWASAKI, K. - TERAMOTO, E., Spatial segregation of interacting species. J. Theo. Biology, 79, 1979, 83-99. MR540951DOI10.1016/0022-5193(79)90258-3
  32. SHIM, S.-A., Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqns., 185, 2002, 281-305. Zbl1032.35090MR1935640DOI10.1006/jdeq.2002.4169
  33. SWEERS, G., A sign-changing global minimizer on a convex domain. In: C. BANDLE - J. BEMELMANS - M. CHIPOT - M. GRÜTER - J. ST. JEAN PAULIN (eds.), Progress in Partial Differential Equations: Elliptic and Parabolic Problems. Pitman Research Notes in Math., 266, Longman, Harlow1992, 251-258. Zbl0789.35066MR1194233
  34. TAKAGI, I., Point-condensation for a reaction-diffusion system. J. Diff. Eqns., 61, 1986, 208-249. Zbl0627.35049MR823402DOI10.1016/0022-0396(86)90119-1
  35. TREMBLEY, A., Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. Leyden1744. 
  36. TURING, A.M., The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B, 237, 1952, 37-72. 
  37. WALTMAN, P.E., Competition models in population biology. CBMS-NSF Conf. Ser. Appl. Math., 45, SIAM, Philadelphia1983. Zbl0572.92019MR778562DOI10.1137/1.9781611970258
  38. YAGI, A., Global solution to some quasilinear parabolic system in population dynamics. Nonlinear Analysis, 21, 1993, 531-556. Zbl0810.35046MR1245865DOI10.1016/0362-546X(93)90004-C

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.