Diffusion and cross-diffusion in pattern formation
- Volume: 15, Issue: 3-4, page 197-214
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topNi, Wei-Ming. "Diffusion and cross-diffusion in pattern formation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 197-214. <http://eudml.org/doc/252393>.
@article{Ni2004,
abstract = {We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as $2 \times 2$ systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.},
author = {Ni, Wei-Ming},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Diffusion; Cross-diffusion; Shadow systems; Steady states; Stability},
language = {eng},
month = {12},
number = {3-4},
pages = {197-214},
publisher = {Accademia Nazionale dei Lincei},
title = {Diffusion and cross-diffusion in pattern formation},
url = {http://eudml.org/doc/252393},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Ni, Wei-Ming
TI - Diffusion and cross-diffusion in pattern formation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 197
EP - 214
AB - We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as $2 \times 2$ systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.
LA - eng
KW - Diffusion; Cross-diffusion; Shadow systems; Steady states; Stability
UR - http://eudml.org/doc/252393
ER -
References
top- AMANN, H., Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. Integral Eqns., 3, 1990, 13-75. Zbl0729.35062MR1014726
- AMANN, H., Nonhomogeneous linear quasilinear elliptic and parabolic boundary value problems. In: H. SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart-Leipzig1993, 9-126. Zbl0810.35037MR1242579
- AMANN, H., Supersolution, monotone iteration and stability. J. Diff. Eqns., 21, 1976, 365-377. Zbl0319.35039MR407451
- CANTRELL, R.S. - COSNER, C., Spatial ecology via reaction-diffusion equations. John Wiley and Sons, 2003. Zbl1087.92058MR2191264DOI10.1002/0470871296
- CASTEN, R.G. - HOLLAND, C.J., Instability results for a reaction-diffusion equation with Neumann boundary conditions. J. Diff. Eqns., 27, 1978, 266-273. Zbl0338.35055MR480282DOI10.1016/0022-0396(78)90033-5
- CHOI, Y.-S. - LUI, R. - YAMADA, Y., Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 719-730. Zbl1047.35054MR2018876DOI10.3934/dcds.2004.10.719
- GIERER, A. - MEINHARDT, H., A theory of biological pattern formation. Kybernetik, 12, 1972, 30-39.
- HALE, J.K. - SAKAMOTO, K., Shadow systems and attractors in reaction-diffusion equations. Appl. Anal., 32, 1989, 287-303. Zbl0667.34072MR1030101DOI10.1080/00036818908839855
- HALE, J.K. - VEGAS, J.M., A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal., 86, 1984, 99-123. Zbl0569.35048MR751304DOI10.1007/BF00275730
- HUTCHINSON, G.E., An introduction to population ecology. Yale University Press, New Haven, CT1978. Zbl0414.92026MR492532
- JIMBO, S. - MORITA, Y., Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels. Comm. PDE, 17, 1992, 523-552. Zbl0766.35029MR1163435DOI10.1080/03605309208820852
- LE, D., Cross diffusion systems on spatial dimensional domains. Indiana Univ. Math. J., 51, 2002, 625-643. Zbl1046.35061MR1911048DOI10.1512/iumj.2002.51.2198
- LIN, C.-S. - NI, W.-M., Stability of solutions of semilinear diffusion equations. Preprint, 1986.
- LOU, Y. - NI, W.-M., Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqns., 131, 1996, 79-131. Zbl0867.35032MR1415047DOI10.1006/jdeq.1996.0157
- LOU, Y. - NI, W.-M., Diffusion vs cross diffusion: An elliptic approach. J. Diff. Eqns., 154, 1999, 157-190. Zbl0934.35040MR1685622DOI10.1006/jdeq.1998.3559
- LOU, Y. - NI, W.-M. - WU, Y., On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 4, 1998, 193-203. Zbl0960.35049MR1616969DOI10.3934/dcds.1998.4.193
- LOU, Y. - NI, W.-M. - YOTSUTANI, S., On a limiting system in the Lotka-Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 435-458. Zbl1174.35360MR2026204DOI10.3934/dcds.2004.10.435
- MATANO, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS, 15, 1979, 401-454. Zbl0445.35063MR555661DOI10.2977/prims/1195188180
- NI, W.-M., Some aspects of semilinear ellitpic equations. Lecture Notes, National Tsinghua Univ., Hsinchu-Taiwan-China1987. Zbl0676.35026
- NI, W.-M., Diffusion, cross-diffusion, and their spike-layer steady states. Notices of Amer. Math. Soc., 45, 1998, 9-18. Zbl0917.35047MR1490535
- NI, W.-M. - POLACIK, P. - YANAGIDA, E., Montonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc., 353, 2001, 5057-5069. Zbl0981.35018MR1852094DOI10.1090/S0002-9947-01-02880-X
- NI, W.-M. - TAKAGI, I., On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc., 297, 1986, 351-368. Zbl0635.35031MR849484DOI10.2307/2000473
- NI, W.-M. - TAKAGI, I., On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 44, 1991, 819-851. Zbl0754.35042MR1115095DOI10.1002/cpa.3160440705
- NI, W.-M. - TAKAGI, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J., 70, 1993, 247-281. Zbl0796.35056MR1219814DOI10.1215/S0012-7094-93-07004-4
- NI, W.-M. - TAKAGI, I., Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Industrial Appl. Math., 12, 1995, 327-365. Zbl0843.35006MR1337211DOI10.1007/BF03167294
- NI, W.-M. - TAKAGI, I. - YANAGIDA, E., Stability analysis of point-condensation solutions to a reaction-diffusion system. Tokoku Math. J., submitted.
- NI, W.-M. - TAKAGI, I. - YANAGIDA, E., Stability of least-energy patterns in a shadow system of an activator-inhibitor model. Japan J. Industrial Appl. Math., 18, 2001, 259-272. Zbl1200.35172MR1842911DOI10.1007/BF03168574
- POZIO, M.A. - TESEI, A., Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlinear Analysis, 14, 1990, 657-689. Zbl0716.35034MR1049787DOI10.1016/0362-546X(90)90043-G
- POZIO, M.A. - TESEI, A., Invariant rectangles and strongly coupled semilinear paraboli systems. Forum Math., 2, 1990, 175-202. Zbl0701.35091MR1042618DOI10.1515/form.1990.2.175
- SATTINGER, D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 1972, 979-1000. Zbl0223.35038MR299921
- SHIGESADA, N. - KAWASAKI, K. - TERAMOTO, E., Spatial segregation of interacting species. J. Theo. Biology, 79, 1979, 83-99. MR540951DOI10.1016/0022-5193(79)90258-3
- SHIM, S.-A., Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqns., 185, 2002, 281-305. Zbl1032.35090MR1935640DOI10.1006/jdeq.2002.4169
- SWEERS, G., A sign-changing global minimizer on a convex domain. In: C. BANDLE - J. BEMELMANS - M. CHIPOT - M. GRÜTER - J. ST. JEAN PAULIN (eds.), Progress in Partial Differential Equations: Elliptic and Parabolic Problems. Pitman Research Notes in Math., 266, Longman, Harlow1992, 251-258. Zbl0789.35066MR1194233
- TAKAGI, I., Point-condensation for a reaction-diffusion system. J. Diff. Eqns., 61, 1986, 208-249. Zbl0627.35049MR823402DOI10.1016/0022-0396(86)90119-1
- TREMBLEY, A., Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. Leyden1744.
- TURING, A.M., The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B, 237, 1952, 37-72.
- WALTMAN, P.E., Competition models in population biology. CBMS-NSF Conf. Ser. Appl. Math., 45, SIAM, Philadelphia1983. Zbl0572.92019MR778562DOI10.1137/1.9781611970258
- YAGI, A., Global solution to some quasilinear parabolic system in population dynamics. Nonlinear Analysis, 21, 1993, 531-556. Zbl0810.35046MR1245865DOI10.1016/0362-546X(93)90004-C
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.