The quasineutral limit problem in semiconductors sciences

Ling Hsiao

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2004)

  • Volume: 15, Issue: 3-4, page 249-256
  • ISSN: 1120-6330

Abstract

top
The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.

How to cite

top

Hsiao, Ling. "The quasineutral limit problem in semiconductors sciences." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.3-4 (2004): 249-256. <http://eudml.org/doc/252399>.

@article{Hsiao2004,
abstract = {The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.},
author = {Hsiao, Ling},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quasineutral limit; Drift-diffusion model; Semiconductors; quasineutral limit; drift-diffusion model; semiconductors; electrical current transport; a priori estimates},
language = {eng},
month = {12},
number = {3-4},
pages = {249-256},
publisher = {Accademia Nazionale dei Lincei},
title = {The quasineutral limit problem in semiconductors sciences},
url = {http://eudml.org/doc/252399},
volume = {15},
year = {2004},
}

TY - JOUR
AU - Hsiao, Ling
TI - The quasineutral limit problem in semiconductors sciences
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/12//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 3-4
SP - 249
EP - 256
AB - The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.
LA - eng
KW - Quasineutral limit; Drift-diffusion model; Semiconductors; quasineutral limit; drift-diffusion model; semiconductors; electrical current transport; a priori estimates
UR - http://eudml.org/doc/252399
ER -

References

top
  1. ALÌ, G. - BINI, D. - RIONERO, S., Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J. Math. Anal., 32(3), 2000, 572-587 (electronic). Zbl0984.35104MR1786158DOI10.1137/S0036141099355174
  2. GASSER, I., The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl., 8(3), 2001, 237-249. Zbl0980.35158MR1841258DOI10.1007/PL00001447
  3. GASSER, I. - HSIAO, L. - MARKOWICH, P.A. - WANG, S., Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors. J. Math. Anal. Appl., 268(1), 2002, 184-199. Zbl1016.82034MR1893201DOI10.1006/jmaa.2001.7813
  4. GASSER, I. - LEVERMORE, C.D. - MARKOWICH, P.A. - SCHMEISER, C., The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J. Appl. Math., 12(4), 2001, 497-512. Zbl1018.82024MR1852311DOI10.1017/S0956792501004533
  5. HSIAO, L. - JU, Q. - WANG, S., The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 26, 2003, 1187-1210. Zbl1027.35071MR2002977DOI10.1002/mma.410
  6. HSIAO, L. - MARKOWICH, P. - WANG, S., The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. J. Diff. Eqns., 192, 2003, 111-133. Zbl1045.35088MR1987086DOI10.1016/S0022-0396(03)00063-9
  7. HSIAO, L. - MARKOWICH, P.A. - WANG, S., Quasineutral limit of a standard drift diffusion model for semiconductors. Sci. China Ser. A, 45(1), 2002, 33-41. Zbl1054.82031MR1894957
  8. HSIAO, L. - WANG, S., Quasineutral limit of a nonlinear drift diffusion model for semiconductors: the fast diffusion case. Advances in Math., vol. 32, no. 5, 2003, 615-622. Zbl1016.82034MR2057508
  9. HSIAO, L. - WANG, S., Quasineutral limit of a transient p - n junction model for semiconductors. Preprint. 
  10. HSIAO, L. - WANG, S. - ZHAO, H., Asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 25(8), 2002, 663-700. Zbl1010.35071MR1900649DOI10.1002/mma.307
  11. HSIAO, L. - ZHANG, K., The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci., 10(9), 2000, 1333-1361. Zbl1061.82027MR1796567DOI10.1142/S0218202500000653
  12. JU, Q. - LI, Y., Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Mathematica Sci., to appear. Zbl1065.35186MR2073259
  13. JÜNGEL, A. - PENG, Y.-J., A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal., 28(1), 2001, 49-73. Zbl1045.76058MR1865570
  14. MARKOWICH, P.A. - RINGHOFER, C.A. - SCHMEISER, C., Semiconductor Equations. Springer-Verlag, Vienna1990. Zbl0765.35001MR1063852DOI10.1007/978-3-7091-6961-2
  15. RINGHOFER, C., An asymptotic analysis of a transient p - n -junction model. SIAM J. Appl. Math., 47(3), 1987, 624-642. Zbl0657.35007MR889643DOI10.1137/0147042
  16. SCHMEISER, C. - UNTERREITER, A., The transient behaviour of multidimensional p - n -diodes in low injection. Math. Methods Appl. Sci., 16(4), 1993, 265-279. Zbl0780.45007MR1213184DOI10.1002/mma.1670160403
  17. VAN ROOSBROECK, W., Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29, 1950, 560-607. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.