Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
- Volume: 13, Issue: 2, page 85-89
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBiasco, Luca, and Chierchia, Luigi. "Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 85-89. <http://eudml.org/doc/252415>.
@article{Biasco2002,
abstract = {The classical D’Alembert Hamiltonian model for a rotational oblate planet revolving near a «day-year» resonance around a fixed star on a Keplerian ellipse is considered. Notwithstanding the strong degeneracies of the model, stability results a là Nekhoroshev (i.e. for times which are exponentially long in the perturbative parameters) for the angular momentum of the planet hold.},
author = {Biasco, Luca, Chierchia, Luigi},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {D’Alembert model; Nekhoroshev estimates; Spin-orbit resonances; Exponential stability; D'Alambert model; spin-orbit resonances; exponential stability},
language = {eng},
month = {6},
number = {2},
pages = {85-89},
publisher = {Accademia Nazionale dei Lincei},
title = {Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics},
url = {http://eudml.org/doc/252415},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Biasco, Luca
AU - Chierchia, Luigi
TI - Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 85
EP - 89
AB - The classical D’Alembert Hamiltonian model for a rotational oblate planet revolving near a «day-year» resonance around a fixed star on a Keplerian ellipse is considered. Notwithstanding the strong degeneracies of the model, stability results a là Nekhoroshev (i.e. for times which are exponentially long in the perturbative parameters) for the angular momentum of the planet hold.
LA - eng
KW - D’Alembert model; Nekhoroshev estimates; Spin-orbit resonances; Exponential stability; D'Alambert model; spin-orbit resonances; exponential stability
UR - http://eudml.org/doc/252415
ER -
References
top- V.I. Arnold (ed.), Encyclopaedia of Mathematical Sciences. Dynamical Systems III, Springer-Verlag, 3, 1988. Zbl0623.00023MR923953DOI10.1007/978-3-642-61551-1
- Biasco, L. - Chierchia, L., On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. Zbl1032.37039
- Biasco, L. - Chierchia, L., Effective Hamiltonian for the D’Alembert planetary model near a spin/orbit resonance. To appear. Zbl1083.70014MR1956525DOI10.1023/A:1020151319725
- Biasco, L. - Chierchia, L. - Treschev, D., Total stability of properly-degenerate Hamiltonian systems with two degrees-of-freedom. Preprint 2001. Zbl1095.37027
- Chierchia, L. - Gallavotti, G., Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, Phys. Théor., 60, 1994, 1-144. Erratum, Ann. Inst. Henri Poincaré, Phys. Théor., 68, n. 1, 135, 1998. Zbl1010.37039MR1259103
- Poincaré, H., Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier Villars, Paris1892. JFM30.0834.08
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.