A Note on squares in arithmetic progressions, II
Enrico Bombieri; Umberto Zannier
- Volume: 13, Issue: 2, page 69-75
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topBombieri, Enrico, and Zannier, Umberto. "A Note on squares in arithmetic progressions, II." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 13.2 (2002): 69-75. <http://eudml.org/doc/252428>.
@article{Bombieri2002,
abstract = {We show that the number of squares in an arithmetic progression of length $N$ is at most $c_\{1\}N^\{3/5\}(\log N)^\{c_\{2\}\}$, for certain absolute positive constants $c_\{1\}$, $c_\{2\}$. This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent $\frac\{2\}\{3\}$ in place of our $\frac\{3\}\{5\}$. The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus $5$ as in [1].},
author = {Bombieri, Enrico, Zannier, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Diophantine equations; Elliptic curves; Arithmetic progressions; elliptic curves; arithmetic progressions},
language = {eng},
month = {6},
number = {2},
pages = {69-75},
publisher = {Accademia Nazionale dei Lincei},
title = {A Note on squares in arithmetic progressions, II},
url = {http://eudml.org/doc/252428},
volume = {13},
year = {2002},
}
TY - JOUR
AU - Bombieri, Enrico
AU - Zannier, Umberto
TI - A Note on squares in arithmetic progressions, II
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2002/6//
PB - Accademia Nazionale dei Lincei
VL - 13
IS - 2
SP - 69
EP - 75
AB - We show that the number of squares in an arithmetic progression of length $N$ is at most $c_{1}N^{3/5}(\log N)^{c_{2}}$, for certain absolute positive constants $c_{1}$, $c_{2}$. This improves the previous result of Bombieri, Granville and Pintz [1], where one had the exponent $\frac{2}{3}$ in place of our $\frac{3}{5}$. The proof uses the same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather than curves of genus $5$ as in [1].
LA - eng
KW - Diophantine equations; Elliptic curves; Arithmetic progressions; elliptic curves; arithmetic progressions
UR - http://eudml.org/doc/252428
ER -
References
top- Bombieri, E. - Granville, A. - Pintz, J., Squares in arithmetic progressions. Duke Math. J., 66, 1992, 369-385. Zbl0771.11034MR1167100DOI10.1215/S0012-7094-92-06612-9
- Szemerédi, E., The number of squares in arithmetic progressions. Stud. Sci. Math. Hungar., 9, 1974, 417. Zbl0318.10029MR401698
- Zimmer, H.G., On the difference of the Weil height and the Néron-Tate height. Math. Z., 147, 1976, 35-51. Zbl0303.14003MR419455
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.