Global boundary regularity for the p a r t i a l ¯ -equation on q -pseudo-convex domains

Heungju Ahn

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 1, page 5-9
  • ISSN: 1120-6330

Abstract

top
For a bounded domain D of C n , we introduce a notion of « q -pseudoconvexity» of new type and prove that for a given ¯ -closed p , r -form f that is smooth up to the boundary on D , and for r q , there exists a p , r - 1 -form u smooth up to the boundary on D which is a solution of the equation ¯ u = f

How to cite

top

Ahn, Heungju. "Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.1 (2005): 5-9. <http://eudml.org/doc/252429>.

@article{Ahn2005,
abstract = {For a bounded domain $D$ of $\mathbb\{C\}^\{n\}$, we introduce a notion of «$q$-pseudoconvexity» of new type and prove that for a given $\overline\{\partial\}$-closed $(p,r)$-form $f$ that is smooth up to the boundary on $D$, and for $r \ge q$, there exists a $(p,r-1)$-form $u$ smooth up to the boundary on $D$ which is a solution of the equation $\overline\{\partial\} u = f$},
author = {Ahn, Heungju},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {$\overline\{\partial \}$ ∂ ¯ -equation; $q$ q -pseudoconvexity; Cauchy-Riemann system; -equation; -pseudoconvexity},
language = {eng},
month = {3},
number = {1},
pages = {5-9},
publisher = {Accademia Nazionale dei Lincei},
title = {Global boundary regularity for the $\overline\{\partial\}$-equation on $q$-pseudo-convex domains},
url = {http://eudml.org/doc/252429},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Ahn, Heungju
TI - Global boundary regularity for the $\overline{\partial}$-equation on $q$-pseudo-convex domains
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/3//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 1
SP - 5
EP - 9
AB - For a bounded domain $D$ of $\mathbb{C}^{n}$, we introduce a notion of «$q$-pseudoconvexity» of new type and prove that for a given $\overline{\partial}$-closed $(p,r)$-form $f$ that is smooth up to the boundary on $D$, and for $r \ge q$, there exists a $(p,r-1)$-form $u$ smooth up to the boundary on $D$ which is a solution of the equation $\overline{\partial} u = f$
LA - eng
KW - $\overline{\partial }$ ∂ ¯ -equation; $q$ q -pseudoconvexity; Cauchy-Riemann system; -equation; -pseudoconvexity
UR - http://eudml.org/doc/252429
ER -

References

top
  1. CHEN, S.-C. - SHAW, M.-C., Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI2001. MR 2001m:32071 Zbl0963.32001MR1800297
  2. HO, L.-H., ¯ -problem on weakly q -convex domains. Math. Ann., 290, no. 1, 1991, 3-18. MR 92j:32052 Zbl0714.32006MR1107660DOI10.1007/BF01459235
  3. KOHN, J.J., Global regularity for ¯ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273-292. MR 49 #9442 Zbl0276.35071MR344703
  4. KOHN, J.J., Methods of partial differential equations in complex analysis. Amer. Math. Soc. Proc. Sympos. Pure Math., XXX, Part. 1, Providence, RI1977, 215-237. Zbl0635.32011MR477156
  5. MICHEL, V., Sur la régularité C du ¯ au bord d'un domaine de C n dont la forme de Levi a exactement s valeurs propres strictement négatives. Math. Ann., 295, 1993, no. 1, 135-161. MR 93k:32030 Zbl0788.32010MR1198845DOI10.1007/BF01444880
  6. ZAMPIERI, G., q -pseudoconvexity and regularity at the boundary for solutions of the ¯ -problem. Compositio Math., 121, 2000, no. 2, 155-162. MR 2001a:32048 Zbl0953.32030MR1757879DOI10.1023/A:1001811318865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.