An example of a non-degenerate precession possessing two distinct pairs of axes
Giancarlo Cantarelli; Corrado Risito
- Volume: 14, Issue: 4, page 327-335
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCantarelli, Giancarlo, and Risito, Corrado. "An example of a non-degenerate precession possessing two distinct pairs of axes." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.4 (2003): 327-335. <http://eudml.org/doc/252436>.
@article{Cantarelli2003,
abstract = {In the present paper we provide an interesting example of a non-degenerate precession possessing two distinct pairs $(p,f)$, $(p^\{\prime\},f^\{\prime\})$ of axes of precession and figure. Thus the problem arises of the existence of classes of precessions possessing a unique axis of precession and a unique axis of figure. In the fourth section we show that the class of non-degenerate regular precessions enjoys this property.},
author = {Cantarelli, Giancarlo, Risito, Corrado},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Rigid body; Fixed point; Precession},
language = {eng},
month = {12},
number = {4},
pages = {327-335},
publisher = {Accademia Nazionale dei Lincei},
title = {An example of a non-degenerate precession possessing two distinct pairs of axes},
url = {http://eudml.org/doc/252436},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Cantarelli, Giancarlo
AU - Risito, Corrado
TI - An example of a non-degenerate precession possessing two distinct pairs of axes
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/12//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 4
SP - 327
EP - 335
AB - In the present paper we provide an interesting example of a non-degenerate precession possessing two distinct pairs $(p,f)$, $(p^{\prime},f^{\prime})$ of axes of precession and figure. Thus the problem arises of the existence of classes of precessions possessing a unique axis of precession and a unique axis of figure. In the fourth section we show that the class of non-degenerate regular precessions enjoys this property.
LA - eng
KW - Rigid body; Fixed point; Precession
UR - http://eudml.org/doc/252436
ER -
References
top- GRIOLI, G., Qualche teorema di cinematica dei moti rigidi. Atti Acc. Lincei Rend. fis., s. 8, v. 34, fasc. 6, 1963, 636-641. Zbl0115.18604
- GRIOLI, G., Particular solutions in Stereodynamics. C.I.M.E., I Ciclo, Bressanone1971, n. V. Zbl0277.70002
- GRIOLI, G., Lezioni di Meccanica Razionale. Edizioni Libreria Cortina, Padova2002.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.