Abelian quasinormal subgroups of groups
Stewart E. Stonehewer; Giovanni Zacher
- Volume: 15, Issue: 2, page 69-79
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topStonehewer, Stewart E., and Zacher, Giovanni. "Abelian quasinormal subgroups of groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 15.2 (2004): 69-79. <http://eudml.org/doc/252439>.
@article{Stonehewer2004,
abstract = {Let $G$ be any group and let $A$ be an abelian quasinormal subgroup of $G$. If $n$ is any positive integer, either odd or divisible by $4$, then we prove that the subgroup $A^\{n\}$ is also quasinormal in $G$.},
author = {Stonehewer, Stewart E., Zacher, Giovanni},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Quasinormal subgroup; Abelian groups; Abelian quasinormal subgroups; minimal quasinormal subgroups; products of subgroups; chains of quasinormal subgroups; finite -groups},
language = {eng},
month = {6},
number = {2},
pages = {69-79},
publisher = {Accademia Nazionale dei Lincei},
title = {Abelian quasinormal subgroups of groups},
url = {http://eudml.org/doc/252439},
volume = {15},
year = {2004},
}
TY - JOUR
AU - Stonehewer, Stewart E.
AU - Zacher, Giovanni
TI - Abelian quasinormal subgroups of groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2004/6//
PB - Accademia Nazionale dei Lincei
VL - 15
IS - 2
SP - 69
EP - 79
AB - Let $G$ be any group and let $A$ be an abelian quasinormal subgroup of $G$. If $n$ is any positive integer, either odd or divisible by $4$, then we prove that the subgroup $A^{n}$ is also quasinormal in $G$.
LA - eng
KW - Quasinormal subgroup; Abelian groups; Abelian quasinormal subgroups; minimal quasinormal subgroups; products of subgroups; chains of quasinormal subgroups; finite -groups
UR - http://eudml.org/doc/252439
ER -
References
top- CURTIS, C.W. - REINER, I., Representation Theory of Finite Groups and Associative Algebras. Pure and Appl. Math., vol. 11, Interscience, New York1962. Zbl0131.25601MR144979
- GROSS, F., -subgroups of core-free quasinormal subgroups. Rocky Mountain J. Math., 1, 1971, 541-550. Zbl0238.20040MR279192
- HUPPERT, B., Über das Produkt von paarweise vertauschbaren zyklischen Gruppen. Math. Z., 58, 1953, 242-264. Zbl0050.25603MR55341
- ITÔ, N. - SZÉP, J., Über die Quasinormalteiler von endlichen Gruppen. Acta Sci. Math. (Szeged), 23, 1962, 168-170. Zbl0112.02106MR138676
- MAIER, R. - SCHMID, P., The embedding of permutable subgroups in finite groups. Math. Z., 131, 1973, 269-272. Zbl0259.20017MR364443
- ORE, O., On the application of structure theory to groups. Bull. Amer. Math. Soc., 44, 1938, 801-806. MR1563880JFM64.0054.04
- ROBINSON, D.J.S., A Course in the Theory of Groups. Graduate Texts in Math., 80, 2nd edition, Springer, New York1996. Zbl0836.20001MR1357169DOI10.1007/978-1-4419-8594-1
- SCHMIDT, R., Subgroup Lattices of Groups. Walter de Gruyter, Berlin1994. Zbl0843.20003MR1292462DOI10.1515/9783110868647
- SCOTT, W.R., Group Theory. Prentice-Hall, Inc., Englewood Cliffs, N.J.1964. Zbl0126.04504MR167513
- STONEHEWER, S.E., Permutable subgroups of infinite groups. Math. Z., 125, 1972, 1-16. Zbl0219.20021MR294510
- STONEHEWER, S.E., Permutable subgroups of some finite -groups. J. Austral. Math. Soc., 16, 1973, 90-97. Zbl0279.20017MR332964
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.