Liouville type theorems for some conformally invariant fully nonlinear equations
- Volume: 14, Issue: 3, page 219-225
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLi, YanYan. "Liouville type theorems for some conformally invariant fully nonlinear equations." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.3 (2003): 219-225. <http://eudml.org/doc/252446>.
@article{Li2003,
abstract = {This is a report on some joint work with Aobing Li on Liouville type theorems for some conformally invariant fully nonlinear equations.},
author = {Li, YanYan},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Liouville type theorems; Conformally invariant equations; conformally invariant equations},
language = {eng},
month = {9},
number = {3},
pages = {219-225},
publisher = {Accademia Nazionale dei Lincei},
title = {Liouville type theorems for some conformally invariant fully nonlinear equations},
url = {http://eudml.org/doc/252446},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Li, YanYan
TI - Liouville type theorems for some conformally invariant fully nonlinear equations
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/9//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 3
SP - 219
EP - 225
AB - This is a report on some joint work with Aobing Li on Liouville type theorems for some conformally invariant fully nonlinear equations.
LA - eng
KW - Liouville type theorems; Conformally invariant equations; conformally invariant equations
UR - http://eudml.org/doc/252446
ER -
References
top- CAFFARELLI, L. - GIDAS, B. - SPRUCK, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, 1989, 271-297. Zbl0702.35085MR982351DOI10.1002/cpa.3160420304
- CAFFARELLI, L. - NIRENBERG, L. - SPRUCK, J., The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155, 1985, 261-301. Zbl0654.35031MR806416DOI10.1007/BF02392544
- CHANG, S.Y. A. - GURSKY, M. - YANG, P., An a priori estimate for a fully nonlinear equation on four-manifolds. Preprint. Zbl1067.58028
- CHANG, S.Y. A. - GURSKY, M. - YANG, P., Entire solutions of a fully nonlinear equation. Preprint. Zbl1183.53035MR2055838
- CHEN, W. - LI, C., Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 1991, 615-622. Zbl0768.35025MR1121147DOI10.1215/S0012-7094-91-06325-8
- GIDAS, B. - NI, W.M. - NIRENBERG, L., Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. Zbl0425.35020MR544879
- GIDAS, B. - SPRUCK, J., Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 1981, 525-598. Zbl0465.35003MR615628DOI10.1002/cpa.3160340406
- LI, A. - LI, Y.Y., On some conformally invariant fully nonlinear equations. C. R. Acad. Sci. Paris, Ser. I, 334, 2002, 1-6. Zbl0998.58011MR1957529
- LI, A. - LI, Y.Y., On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., to appear. Zbl1155.35353MR2706075
- LI, A. - LI, Y.Y., A general Liouville type theorem for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301239 v1 21 Jan 2003. Zbl1221.35149
- LI, A. - LI, Y.Y., Further results on Liouville type theorems for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301254 v1 22 Jan 2003. Zbl1221.35149
- LI, A. - LI, Y.Y., On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. In preparation. Zbl1216.35038
- LI, Y.Y. - ZHANG, L., Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique, to appear. Zbl1173.35477MR2001065DOI10.1007/BF02786551
- LI, Y.Y. - ZHU, M., Uniqueness theorems through the method of moving spheres. Duke Math. J., 80, 1995, 383-417. Zbl0846.35050MR1369398DOI10.1215/S0012-7094-95-08016-8
- OBATA, M., The conjecture on conformal transformations of Riemannian manifolds. J. Diff. Geom., 6, 1971, 247-258. Zbl0236.53042MR303464
- VIACLOVSKY, J., Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101, 2000, 283-316. Zbl0990.53035MR1738176DOI10.1215/S0012-7094-00-10127-5
- VIACLOVSKY, J., Conformally invariant Monge-Ampere equations: global solutions. Trans. Amer. Math. Soc., 352, 2000, 4371-4379. Zbl0951.35044MR1694380DOI10.1090/S0002-9947-00-02548-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.