Some existence results for the scalar curvature problem via Morse theory
- Volume: 10, Issue: 4, page 267-270
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topMalchiodi, Andrea. "Some existence results for the scalar curvature problem via Morse theory." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.4 (1999): 267-270. <http://eudml.org/doc/252447>.
@article{Malchiodi1999,
abstract = {We prove existence of positive solutions for the equation \( -\triangle\_\{g\_\{0\}\} u + u = (1 + \epsilon K (x)) u^\{2^\{*\}-1\} \) on \( S^\{n\} \), arising in the prescribed scalar curvature problem. is the Laplace-Beltrami operator on \( S^\{n\} \), \( 2^\{∗\} \) is the critical Sobolev exponent, and \( \epsilon \) is a small parameter. The problem can be reduced to a finite dimensional study which is performed with Morse theory.},
author = {Malchiodi, Andrea},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Elliptic equations; Critical exponent; Scalar curvature; Perturbation method; Morse theory; elliptic equations; critical Sobolev exponent; scalar curvature; perturbation method},
language = {eng},
month = {12},
number = {4},
pages = {267-270},
publisher = {Accademia Nazionale dei Lincei},
title = {Some existence results for the scalar curvature problem via Morse theory},
url = {http://eudml.org/doc/252447},
volume = {10},
year = {1999},
}
TY - JOUR
AU - Malchiodi, Andrea
TI - Some existence results for the scalar curvature problem via Morse theory
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/12//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 4
SP - 267
EP - 270
AB - We prove existence of positive solutions for the equation \( -\triangle_{g_{0}} u + u = (1 + \epsilon K (x)) u^{2^{*}-1} \) on \( S^{n} \), arising in the prescribed scalar curvature problem. is the Laplace-Beltrami operator on \( S^{n} \), \( 2^{∗} \) is the critical Sobolev exponent, and \( \epsilon \) is a small parameter. The problem can be reduced to a finite dimensional study which is performed with Morse theory.
LA - eng
KW - Elliptic equations; Critical exponent; Scalar curvature; Perturbation method; Morse theory; elliptic equations; critical Sobolev exponent; scalar curvature; perturbation method
UR - http://eudml.org/doc/252447
ER -
References
top- Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré Analyse Non Linéaire, 15, 1998, 233-252; Preliminary note on C. R. Acad. Sci. Paris, 323, Série I, 1996, 753-758. Zbl1004.37043MR1416171DOI10.1016/S0294-1449(97)89300-6
- Ambrosetti, A. - Garcia Azorero, J. - Peral, I., Perturbation of , the Scalar Curvature Problem in and related topics. J. Funct. Anal., to appear. Zbl0938.35056MR1696454DOI10.1006/jfan.1999.3390
- Bahri, A. - Coron, J. M., The scalar curvature problem on the standard three dimensional sphere. J. Funct. Anal., 95, 1991, 106-172. Zbl0722.53032MR1087949DOI10.1016/0022-1236(91)90026-2
- Bianchi, G., The scalar curvature equation on and on . Adv. Diff. Eq., 1, 1996, 857-880. Zbl0865.35044MR1392008
- Chang, S. A. - Yang, P., Prescribing scalar curvature on . Acta Math., 159, 1987, 215-229. Zbl0636.53053MR908146DOI10.1007/BF02392560
- Chang, S. A. - Yang, P., Conformal deformation of metrics on . J. Diff. Geom., 27, 1988, 259-296. Zbl0649.53022MR925123
- Chang, S. A. - Yang, P., A perturbation result in prescribing scalar curvature on . Duke Math. J., 64 (1), 1991, 27-69. Zbl0739.53027MR1131392DOI10.1215/S0012-7094-91-06402-1
- Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, 1993. Zbl0779.58005MR1196690
- Chang, K. C. - Liu, J. Q., On Nirenberg’s problem. Int. J. Math., 4, 1993, 35-58. Zbl0786.58010MR1209959DOI10.1142/S0129167X93000042
- Chen, W. X. - Ding, W., Scalar curvature on . Trans. Amer. Math. Soc., 303, 1987, 365-382. Zbl0635.35026
- Kazdan, J. L. - Warner, F., Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. of Math., 101, 1971, 317-331. Zbl0297.53020MR375153
- Li, Y. Y., Prescribing scalar curvature on and related topics, Part 1. J. Diff. Equat., 120, 1995, 319-410. Zbl0827.53039MR1347349DOI10.1006/jdeq.1995.1115
- Li, Y. Y., Prescribing scalar curvature on and related topics, Part 2, Existence and compactness. Comm. Pure Appl. Math., 49, 1996, 437-477. Zbl0849.53031MR1383201DOI10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
- Malchiodi, A., The Scalar Curvature Problem on : an approach via Morse Theory. Preprint SISSA. Zbl1012.53035MR1911824DOI10.1007/s005260100110
- Schoen, R. - Zhang, D., Prescribed scalar curvature on the -sphere. Calc. Var., 4, 1996, 1-25. Zbl0843.53037MR1379191DOI10.1007/BF01322307
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.