Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 1, page 21-40
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanaś, Józef, and Ben Amar, Afif. "Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets." Commentationes Mathematicae Universitatis Carolinae 54.1 (2013): 21-40. <http://eudml.org/doc/252455>.
@article{Banaś2013,
abstract = {In this paper we prove a collection of new fixed point theorems for operators of the form $T+S$ on an unbounded closed convex subset of a Hausdorff topological vector space $(E,\Gamma )$. We also introduce the concept of demi-$\tau $-compact operator and $\tau $-semi-closed operator at the origin. Moreover, a series of new fixed point theorems of Krasnosel’skii type is proved for the sum $T+S$ of two operators, where $T$ is $\tau $-sequentially continuous and $\tau $-compact while $S$ is $\tau $-sequentially continuous (and $\Phi _\{\tau \}$-condensing, $\Phi _\{\tau \}$-nonexpansive or nonlinear contraction or nonexpansive). The main condition in our results is formulated in terms of axiomatic $\tau $-measures of noncompactness. Apart from that we show the applicability of some our results to the theory of integral equations in the Lebesgue space.},
author = {Banaś, Józef, Ben Amar, Afif},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\tau $-measure of noncompactness; $\tau $-sequential continuity; $\Phi _\{\tau \}$-condensing operator; $\Phi _\{\tau \}$-nonexpansive operator; nonlinear contraction; fixed point theorem; demi-$\tau $-compactness; operator $\tau $-semi-closed at origin; Lebesgue space; integral equation; -measure of noncompactness; -sequential continuity; -condensing operator; -nonexpansive operator; demi--compactness; -semi-closed operator},
language = {eng},
number = {1},
pages = {21-40},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets},
url = {http://eudml.org/doc/252455},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Banaś, Józef
AU - Ben Amar, Afif
TI - Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 1
SP - 21
EP - 40
AB - In this paper we prove a collection of new fixed point theorems for operators of the form $T+S$ on an unbounded closed convex subset of a Hausdorff topological vector space $(E,\Gamma )$. We also introduce the concept of demi-$\tau $-compact operator and $\tau $-semi-closed operator at the origin. Moreover, a series of new fixed point theorems of Krasnosel’skii type is proved for the sum $T+S$ of two operators, where $T$ is $\tau $-sequentially continuous and $\tau $-compact while $S$ is $\tau $-sequentially continuous (and $\Phi _{\tau }$-condensing, $\Phi _{\tau }$-nonexpansive or nonlinear contraction or nonexpansive). The main condition in our results is formulated in terms of axiomatic $\tau $-measures of noncompactness. Apart from that we show the applicability of some our results to the theory of integral equations in the Lebesgue space.
LA - eng
KW - $\tau $-measure of noncompactness; $\tau $-sequential continuity; $\Phi _{\tau }$-condensing operator; $\Phi _{\tau }$-nonexpansive operator; nonlinear contraction; fixed point theorem; demi-$\tau $-compactness; operator $\tau $-semi-closed at origin; Lebesgue space; integral equation; -measure of noncompactness; -sequential continuity; -condensing operator; -nonexpansive operator; demi--compactness; -semi-closed operator
UR - http://eudml.org/doc/252455
ER -
References
top- Appell J., De Pascale E., Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi funzioni misurabili, Boll. Un. Mat. Ital. B (6) 3 (1984), 497–515. MR0762715
- Appell J., Zabrejko P.P., Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990. Zbl1156.47052MR1066204
- Arino O., Gautier S., Penot J.P., A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekvac. 27 (1984), no. 3, 273–279. Zbl0599.34008MR0794756
- Banaś J., Demicontinuity and weak sequential continuity of operators in the Lebesgue space, Proceedings of the 1st Polish Symposium on Nonlinear Analysis, 1997, pp. 124–129.
- Banaś J., 10.1016/S0362-546X(96)00157-5, Nonlinear Anal. 30 (1997), no. 6, 3283–3293. MR1602984DOI10.1016/S0362-546X(96)00157-5
- Barroso C.S., 10.1016/S0362-546X(03)00208-6, Nonlinear Anal. 55 (2003), 25–31. Zbl1042.47035MR2001629DOI10.1016/S0362-546X(03)00208-6
- Barroso C.S., Teixeira E.V., A topological and geometric approach to fixed point results for sum of operators and applications, Nonlinear Anal. 60 (2005), no. 4, 625–660. MR2109150
- Barroso C.S., Kalenda O.F.K., Rebouas M.P., 10.1016/j.jmaa.2012.10.026, J. Math. Anal. Appl. 401 (2013), no. 1, 1–8. MR3011241DOI10.1016/j.jmaa.2012.10.026
- Ben Amar A., Jeribi A., Mnif M., 10.1002/mma.639, Math. Methods Appl. Sci. 28 (2006), 1737–1756. DOI10.1002/mma.639
- Ben Amar A., Jeribi A., Mnif M., 10.1080/01630560701749482, Numer. Funct. Anal. Optim. 29 (2008), no. 1–2, 1-23. Zbl1130.47305MR2387835DOI10.1080/01630560701749482
- Ben Amar A., Mnif M., Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation, Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. Zbl1193.47056MR2591226
- Ben Amar A., Xu S., 10.1007/s10496-011-0224-2, Anal. Theory Appl. 27 (2011), no. 3, 224–238. MR2844659DOI10.1007/s10496-011-0224-2
- Boyd D.W., Wong J.S.W., 10.1090/S0002-9939-1969-0239559-9, Proc. Amer. Math. Soc. 20 (1969), 458–464. Zbl0175.44903MR0239559DOI10.1090/S0002-9939-1969-0239559-9
- Burton T.A., 10.1016/S0893-9659(97)00138-9, Appl. Math. Lett. 11 (1998), 85–88. MR1490385DOI10.1016/S0893-9659(97)00138-9
- Day M.M., Normed Linear Spaces, Academic Press, New York, 1962. Zbl0583.00016MR0145316
- De Blasi F.S., On a property of the unit sphere in Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. MR0482402
- Dunford N., Pettis B.J., 10.1090/S0002-9947-1940-0002020-4, Trans. Amer. Math. Soc. 47 (1940), 323–392. MR0002020DOI10.1090/S0002-9947-1940-0002020-4
- Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience, Leyden, 1963. Zbl0635.47001
- Edwards R.E., Functional Analysis, Theory and Applications, Holt, Reinhard and Winston, New York, 1965. Zbl0189.12103MR0221256
- Garcia-Falset J., 10.1016/j.na.2009.01.096, Nonlinear Anal. 71 (2009), 2625–2633. Zbl1194.47060MR2532788DOI10.1016/j.na.2009.01.096
- Krasnosel'skii M.A., On the continuity of the operator , Dokl. Akad. Nauk SSSR 77 (1951), 185–188 (in Russian). MR0041354
- Krasnosel'skii M.A., Two remarks on the method of successive approximation, Uspehi Mat. Nauk 10 (1955), 123–127 (in Russian). MR0068119
- Krasnosel'skii M.A., Zabrejko P.P., Pustyl'nik J.I., Sobolevskii P.J., Integral Opertors in Spaces of Summable Functions, Noordhoff, Leyden, 1976.
- Kubiaczyk I., On a fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Differential Incl. 15 (1995), 15–20. Zbl0832.47046MR1344524
- O'Regan D., 10.1016/S0895-7177(98)00014-4, Math. Comput. Modelling 27 (1998), no. 5, 1–14. Zbl1185.34026MR1616796DOI10.1016/S0895-7177(98)00014-4
- O'Regan D., Taoudi M.A., 10.1016/j.na.2010.03.009, Nonlinear Anal. 73 (2010), 283–289. MR2650815DOI10.1016/j.na.2010.03.009
- V.I. Shragin, On the weak continuity of the Nemytskii operator, Uchen. Zap. Mosk. Obl. Ped. Inst. 57 (1957), 73–79.
- Taoudi M.A., 10.1016/j.na.2009.06.086, Nonlin. Anal. 72 (2010), no. 1, 478–482. Zbl1225.47071MR2574957DOI10.1016/j.na.2009.06.086
- Zabrejko P.P., Koshelev A.I., Krasnosel'skii M.A., Mikhlin S.G., Rakovshchik L.S., Stecenko V.J., Integral Equations, Noordhoff, Leyden, 1975.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.