Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming
Saeed Ketabchi; Malihe Behboodi-Kahoo
Kybernetika (2013)
- Volume: 49, Issue: 1, page 188-198
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKetabchi, Saeed, and Behboodi-Kahoo, Malihe. "Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming." Kybernetika 49.1 (2013): 188-198. <http://eudml.org/doc/252463>.
@article{Ketabchi2013,
abstract = {In this paper, the augmented Lagrangian method is investigated for solving recourse problems and obtaining their normal solution in solving two-stage stochastic linear programming problems. The objective function of stochastic linear programming problem is piecewise linear and non-differentiable. Therefore, to use a smooth optimization methods, the objective function is approximated by a differentiable and piecewise quadratic function. Using quadratic approximation, it is required to obtain the least 2-norm solution for many linear programming problems in each iteration. To obtain the least 2-norm solution for inner problems based on the augmented Lagrangian method, the generalized Newton method is applied.},
author = {Ketabchi, Saeed, Behboodi-Kahoo, Malihe},
journal = {Kybernetika},
keywords = {two-stage stochastic linear programming; recourse problem; normal solution; augmented Lagrangian method; two-stage stochastic linear programming; recourse problem; normal solution; augmented Lagrangian method},
language = {eng},
number = {1},
pages = {188-198},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming},
url = {http://eudml.org/doc/252463},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Ketabchi, Saeed
AU - Behboodi-Kahoo, Malihe
TI - Augmented Lagrangian method for recourse problem of two-stage stochastic linear programming
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 1
SP - 188
EP - 198
AB - In this paper, the augmented Lagrangian method is investigated for solving recourse problems and obtaining their normal solution in solving two-stage stochastic linear programming problems. The objective function of stochastic linear programming problem is piecewise linear and non-differentiable. Therefore, to use a smooth optimization methods, the objective function is approximated by a differentiable and piecewise quadratic function. Using quadratic approximation, it is required to obtain the least 2-norm solution for many linear programming problems in each iteration. To obtain the least 2-norm solution for inner problems based on the augmented Lagrangian method, the generalized Newton method is applied.
LA - eng
KW - two-stage stochastic linear programming; recourse problem; normal solution; augmented Lagrangian method; two-stage stochastic linear programming; recourse problem; normal solution; augmented Lagrangian method
UR - http://eudml.org/doc/252463
ER -
References
top- Armijoo, L., 10.2140/pjm.1966.16.1, Pacific J. Math. 16 (1966), 1-3. MR0191071DOI10.2140/pjm.1966.16.1
- Benders, J. F., 10.1007/BF01386316, Numer. Math. 4 (1962), 238-252. Zbl1115.90361MR0147303DOI10.1007/BF01386316
- Birge, J. R., Chen, X., Qi, L., Newton Method for Stochastic Quadratic Programs with Recourse., AMR, School of Mathematics, UNSW, Sydney 1994.
- Birge, J. R., Louveaux, F., Introduction to stochastic programming., Springer Series in Operation Research, Springer-Verlag, New York 1997. Zbl1223.90001MR1460264
- Branda, M., Chance constrained problems: penalty reformulation and performance of sample approximation technique., Kybernetika 48 (2012), 105-122. Zbl1243.93117MR2932930
- Chen, X., A parallel BFGS-SQP method for stochastic linear programs., In: Computational Techniques and Applications, World Scientific 1995, pp. 67-74. Zbl0909.65034MR1664847
- Chen, X., 10.1016/S0895-7177(00)00075-3, Math. Comput. Model. 31 (2000), 89-98. Zbl1042.90595MR1768781DOI10.1016/S0895-7177(00)00075-3
- Chen, X., Qi, L., Womersley, R. S., 10.1016/0377-0427(94)00082-C, J. Comp. Appl. Math. 60 (1995), 29-46. Zbl0836.65078MR1354646DOI10.1016/0377-0427(94)00082-C
- Chen, X., Womersley, R. S., 10.1007/BF02187643, Ann. Oper. Res. 64 (1995), 113-141. Zbl0854.90106MR1405632DOI10.1007/BF02187643
- Chen, X., Womersley, R. S., 10.1016/0377-0427(94)00082-C, J. Comput. Appl. Math. 60 (1995), 29-46. Zbl0836.65078MR1354646DOI10.1016/0377-0427(94)00082-C
- Chen, X., Womersley, R. S., 10.1080/10556780008805789, Optim. Method. Softw. 13 (2000), 275-306. Zbl0980.90060MR1787947DOI10.1080/10556780008805789
- Dantzig, G. B., 10.1287/mnsc.1.3-4.197, Management Sci. 1 (1995), 197-206. Zbl1215.90042MR0075511DOI10.1287/mnsc.1.3-4.197
- Dantzig, G. B., Glynn, P. W., 10.1007/BF02023045, Ann. Oper. Res. 22 (1990), 1-21. Zbl0714.90074MR1042810DOI10.1007/BF02023045
- Dantzig, G. B., Wolfe, P., 10.1287/opre.8.1.101, Oper. Res. 8 (1960), 101-111. Zbl0093.32806DOI10.1287/opre.8.1.101
- Evtushenko, Yu. G., Golikov, A. I., Mollaverdi, N., 10.1080/10556780500139690, Optim. Method. Softw. 20 (2005), 515-524. MR2179569DOI10.1080/10556780500139690
- Higle, J. L., Sen, S., 10.1287/moor.16.3.650, Math. Oper. Res. 16 (1991), 650-669. Zbl0746.90045MR1120475DOI10.1287/moor.16.3.650
- Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. H., 10.1007/BF01442169, Appl. Math. Optim. 11 (1984), 43-56. MR0726975DOI10.1007/BF01442169
- Infanger, G., 10.1007/BF02060936, Ann. Oper. Res. 39 (1992), 69-95. Zbl0773.90054MR1204972DOI10.1007/BF02060936
- Joe, S., Sloan, I. H., 10.1137/0729068, SIAM J. Numer. Anal. 29 (1992), 1119-1135. Zbl0756.65027MR1173189DOI10.1137/0729068
- Kall, P., Wallace, S. W., Stochastic Programming., John Wiley and Sons, 1994. Zbl0812.90122MR1315300
- Kanzow, C., Qi, H., Qi, L., 10.1023/A:1022457904979, J. Optim. Theory Appl. 116 (2003), 333-345. Zbl1043.90046MR1967673DOI10.1023/A:1022457904979
- Ketabchi, S., Ansari-Piri, E., 10.1016/j.cam.2006.07.004, J. Comput. Appl. Math. 206 (2007), 288-292. Zbl1131.90042MR2337444DOI10.1016/j.cam.2006.07.004
- Mangasarian, O. L., 10.1007/BFb0121017, Math. Program. Stud. 22 (1984), 206-216. Zbl0588.90058MR0774243DOI10.1007/BFb0121017
- Mangasarian, O. L., 10.1023/B:JOTA.0000026128.34294.77, J. Optim. Theory Appl. 121 (2004), 1-18. Zbl1140.90467MR2062967DOI10.1023/B:JOTA.0000026128.34294.77
- Prekopa, A., Probabilistic programming., In: Stochastic programming (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science 10 (2003), pp. 267-352, Elsevier, Amsterdam. Zbl1042.90597MR2052757
- Rockafellar, R. T., Convex Analysis., Princeton University Press, Princeton 1970. Zbl1011.49013MR0274683
- Tarim, S. A., Miguel, I., 10.1007/11754602_10, Lect. Notes Comput. Sci. 3978 (2006), 133-148. DOI10.1007/11754602_10
- Slyke, R. M. Van, Wets, R., 10.1137/0117061, SIAM J. Appl. Math. 17 (1969), 638-663. MR0253741DOI10.1137/0117061
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.