Orlicz spaces associated with a semi-finite von Neumann algebra

Sh. A. Ayupov; V. I. Chilin; R. Z. Abdullaev

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 4, page 519-533
  • ISSN: 0010-2628

Abstract

top
Let M be a von Neumann algebra, let ϕ be a weight on M and let Φ be N -function satisfying the ( δ 2 , Δ 2 ) -condition. In this paper we study Orlicz spaces, associated with M , ϕ and Φ .

How to cite

top

Ayupov, Sh. A., Chilin, V. I., and Abdullaev, R. Z.. "Orlicz spaces associated with a semi-finite von Neumann algebra." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 519-533. <http://eudml.org/doc/252466>.

@article{Ayupov2012,
abstract = {Let $M$ be a von Neumann algebra, let $\varphi $ be a weight on $M$ and let $\Phi $ be $N$-function satisfying the $(\delta _\{2\}, \Delta _\{2\})$-condition. In this paper we study Orlicz spaces, associated with $M$, $\varphi $ and $\Phi $.},
author = {Ayupov, Sh. A., Chilin, V. I., Abdullaev, R. Z.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; von Neumann algebra; weight; Orlicz space; von Neumann algebra; weights; traces; -function},
language = {eng},
number = {4},
pages = {519-533},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Orlicz spaces associated with a semi-finite von Neumann algebra},
url = {http://eudml.org/doc/252466},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Ayupov, Sh. A.
AU - Chilin, V. I.
AU - Abdullaev, R. Z.
TI - Orlicz spaces associated with a semi-finite von Neumann algebra
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 519
EP - 533
AB - Let $M$ be a von Neumann algebra, let $\varphi $ be a weight on $M$ and let $\Phi $ be $N$-function satisfying the $(\delta _{2}, \Delta _{2})$-condition. In this paper we study Orlicz spaces, associated with $M$, $\varphi $ and $\Phi $.
LA - eng
KW - Orlicz spaces; von Neumann algebra; weight; Orlicz space; von Neumann algebra; weights; traces; -function
UR - http://eudml.org/doc/252466
ER -

References

top
  1. Al-Rashed M.H.A., Zegarlinski B., Noncommutative Orlicz spaces associated to a state, Studia Math. 180 (2007), 199–209. Zbl1221.46065MR2314076
  2. Brawn L.G., Kosaki H., Jensen's inequality in semi-finite von Neumann algebras, J. Operator Theory 23 (1990), 3–19. MR1054812
  3. Fack T., Kosaki H., 10.2140/pjm.1986.123.269, Pacific J. Math. 123 (1986), 269–300. MR0840845DOI10.2140/pjm.1986.123.269
  4. Krasnosel'sky M.F., Rutitskii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961; (translated from the Russian). MR0126722
  5. Kunze W., 10.1002/mana.19901470114, Math. Nachr. 147 (1990), 123–138. Zbl0746.46062MR1127316DOI10.1002/mana.19901470114
  6. Muratov M.A., Non commutative Orlicz spaces, Dokl. Akad. Nauk UzSSR 6 (1978), 11–13. MR0511082
  7. Muratov M.A., The Luxemburg norm in an Orlicz space of measurable operators, Dokl. Akad. Nauk UzSSR 1 (1979), 5–6. MR0529172
  8. Muratov M.A., Chilin V.I., Algebras of measurable operators and locally measurable operators, Kyev. Institute of Math. Ukrainian Academy of Sciences, 69, 2007 (Russian). 
  9. Pedersen G., Takesaki M., 10.1007/BF02392262, Acta Math. 130 (1973), 53–87. Zbl0262.46063MR0412827DOI10.1007/BF02392262
  10. Takesaki M., Theory of Operator Algebras I, Springer, New York, 1979. Zbl0990.46034MR0548728
  11. Trunov N.V., The L p -spaces associated with a weight on a semi-finite von Neumann algebra, Constructive theory of functions and functional analysis, no. 3, pp. 88–93, Kazan. Gos. Univ., Kazan, 1981. MR0652348
  12. Trunov N.V., On the theory of normal weights on von Neumann algebras, Izv. Vyssh. Uchebn. Zaved. Math. 8 1982, 61–70. Zbl0521.46056MR0675719
  13. Trunov N.V., Sherstnev A.N., Introduction to the theory of noncommutative integration, N. Soviet Math., 37. Translation from Itogi Nauki i Tekhniki, Sovr. Probl. Math. 27 (1985), 167–190. Zbl0616.46058MR0824264
  14. Yeadon F.J., Convergence of measurable operators, Proc. Cambridge Philos. Soc. 74 (1973), 257–268. Zbl0272.46043MR0326411
  15. Yeadon F.J., 10.1017/S0305004100049434, Math. Proc. Cambridge Philos. Soc. 77 (1975), no. 1, 91–102. MR0353008DOI10.1017/S0305004100049434

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.