Remarks on strongly star-Menger spaces

Yan-Kui Song

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 1, page 97-104
  • ISSN: 0010-2628

Abstract

top
A space X is strongly star-Menger if for each sequence ( 𝒰 n : n ) of open covers of X , there exists a sequence ( K n : n N ) of finite subsets of X such that { S t ( K n , 𝒰 n ) : n } is an open cover of X . In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.

How to cite

top

Song, Yan-Kui. "Remarks on strongly star-Menger spaces." Commentationes Mathematicae Universitatis Carolinae 54.1 (2013): 97-104. <http://eudml.org/doc/252475>.

@article{Song2013,
abstract = {A space $X$ is strongly star-Menger if for each sequence $(\mathcal \{U\}_n:n\in \mathbb \{N\})$ of open covers of $X$, there exists a sequence $(K_n:n\in N)$ of finite subsets of $X$ such that $\lbrace St(K_n,\mathcal \{U\}_n):n\in \mathbb \{N\}\rbrace $ is an open cover of $X$. In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.},
author = {Song, Yan-Kui},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {selection principles; strongly starcompact; strongly star-Menger; Alexandroff duplicate; strongly starcompact space; strongly star-Menger space; Isbell-Mrówka space; Alexandroff duplicate},
language = {eng},
number = {1},
pages = {97-104},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on strongly star-Menger spaces},
url = {http://eudml.org/doc/252475},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Song, Yan-Kui
TI - Remarks on strongly star-Menger spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 1
SP - 97
EP - 104
AB - A space $X$ is strongly star-Menger if for each sequence $(\mathcal {U}_n:n\in \mathbb {N})$ of open covers of $X$, there exists a sequence $(K_n:n\in N)$ of finite subsets of $X$ such that $\lbrace St(K_n,\mathcal {U}_n):n\in \mathbb {N}\rbrace $ is an open cover of $X$. In this paper, we investigate the relationship between strongly star-Menger spaces and related spaces, and also study topological properties of strongly star-Menger spaces.
LA - eng
KW - selection principles; strongly starcompact; strongly star-Menger; Alexandroff duplicate; strongly starcompact space; strongly star-Menger space; Isbell-Mrówka space; Alexandroff duplicate
UR - http://eudml.org/doc/252475
ER -

References

top
  1. Bonanzinga M., Matveev M.V., Some covering properties for Ψ -spaces, Mat. Vesnik 61 (2009), 3–11. (2009) Zbl1199.54140MR2491560
  2. van Douwen E., Reed G.K., Roscoe A.W., Tree I.J., 10.1016/0166-8641(91)90077-Y, Topology Appl. 39 (1991), 71–103. (1991) Zbl0743.54007MR1103993DOI10.1016/0166-8641(91)90077-Y
  3. van Douwen E., The integers and topology, Handbook of Set-theoretic Topology K. Kunen and J.E. Vaughan North-Holland Amsterdam (1984), 111–167. (1984) Zbl0561.54004MR0776622
  4. Engelking R., General Topology, Revised and completed edition, Heldermann, Berlin, 1989. MR1039321
  5. Fleischman W.M., A new extension of countable compactness, Fund. Math. 67 (1971), 1–7. (1971) MR0264608
  6. Kočinac Lj.D.R., Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421–431. (1999) Zbl1009.54025MR1721880
  7. Kočinac Lj.D.R., Star-Menger and related spaces II, Filomat (Niš) 13 (1999), 129–140. (1999) Zbl1009.54025MR1803019
  8. Matveev M.V., A survey on star-covering properties, Topology Atlas, preprint No 330 (1998). (1998) 
  9. Walker R.C., The Stone-Čech Compactification, Springer, New York-Berlin, 1974. Zbl0292.54001MR0380698
  10. Song Y.-K., On countable star-covering properties, Appl. Gen. Topol. 8 (2007), 2 249–258. (2007) Zbl1144.54312MR2398516
  11. Song Y.-K., Remarks on star-Menger spaces, Houston J. Math., to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.