Extremal pseudocompact Abelian groups: A unified treatment
William Wistar Comfort; Jan van Mill
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 197-217
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topComfort, William Wistar, and van Mill, Jan. "Extremal pseudocompact Abelian groups: A unified treatment." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 197-217. <http://eudml.org/doc/252484>.
@article{Comfort2013,
abstract = {The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.},
author = {Comfort, William Wistar, van Mill, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup; abelian; pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup},
language = {eng},
number = {2},
pages = {197-217},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extremal pseudocompact Abelian groups: A unified treatment},
url = {http://eudml.org/doc/252484},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Comfort, William Wistar
AU - van Mill, Jan
TI - Extremal pseudocompact Abelian groups: A unified treatment
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 197
EP - 217
AB - The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.
LA - eng
KW - pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup; abelian; pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup
UR - http://eudml.org/doc/252484
ER -
References
top- Arhangel'skii A., Tkachenko M., Topological Groups and Related Structures, Atlantis Studies in Mathematics, 1, Atlantis Press, Paris and World Scientific Publ. Co., Hackensack, New Jersey, 2008. MR2433295
- Comfort W.W., Topological groups, in: Handbook of Set-theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), pp. 1143–1263, North-Holland, Amsterdam, 1984. Zbl1071.54019MR0776643
- Comfort W.W., Tampering with pseudocompact groups, Topology Proc. 28 (2004), 401–424. Zbl1085.54028MR2159734
- Comfort W.W., 10.1016/j.topol.2007.09.004, Topology Appl. 155 (2008), 172–179. Zbl1132.54020MR2380255DOI10.1016/j.topol.2007.09.004
- Comfort W.W., Jorge Galindo J., 10.1016/j.jpaa.2004.08.018, J. Pure Appl. Algebra 197 (2005), 59–81. MR2123980DOI10.1016/j.jpaa.2004.08.018
- Comfort W.W., Remus D., 10.1007/BF02571718, Math. Z. 215 (1994), 337–346. Zbl0790.54051MR1262521DOI10.1007/BF02571718
- Comfort W.W., Gladdines H., van Mill J., Proper pseudocompact subgroups of pseudocompact Abelian groups, in: Papers on General Topology and Applications, Annals of the New York Academy of Sciences 728 (1994), 237–247. [Note: This is Proc. June, 1992 Queens College Summer Conference on General Topology and Applications (Susan Andima, Gerald Itzkowitz, T. Yung Kong, Ralph Kopperman, Prabud Ram Misra, Lawrence Narici, and Aaron Todd, eds.).]. Zbl0915.54029MR1467777
- Comfort W.W., van Mill J., 10.1016/0166-8641(89)90086-2, Topology Appl. 33 (1989), 21–45. Zbl0698.54003MR1020981DOI10.1016/0166-8641(89)90086-2
- Comfort W.W., van Mill J., 10.1090/S0002-9939-07-08952-6, Proc. Amer. Math. Soc. 135 (2007), 4039–4044. Zbl1138.22002MR2341956DOI10.1090/S0002-9939-07-08952-6
- Comfort W.W., Robertson L.C., 10.1090/S0002-9939-1982-0663891-4, Proc. Amer. Math. Soc 86 (1982), 173–178. Zbl0508.22002MR0663891DOI10.1090/S0002-9939-1982-0663891-4
- Comfort W.W., Robertson L.C., 10.2140/pjm.1985.119.265, Pacific J. Math. 119 (1985), 265–285. MR0803119DOI10.2140/pjm.1985.119.265
- Comfort W.W., Robertson L.C., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 48 pages; Rozprawy Mat. Polish Scientific Publishers, Warszawa, 1988. Zbl0703.22002MR0959432
- Comfort W.W., Ross K.A., 10.2140/pjm.1966.16.483, Pacific J. Math. 16 (1966), 483–496. Zbl0214.28502MR0207886DOI10.2140/pjm.1966.16.483
- Comfort W.W., Soundararajan T., 10.2140/pjm.1982.100.61, Pacific J. Math. 100 (1982), 61–84. Zbl0451.22002MR0661441DOI10.2140/pjm.1982.100.61
- Dikranjan D.N., Shakhmatov D.B., 10.1007/BF02570894, Math. Z. 204 (1990), 583–603. Zbl0685.22001MR1062137DOI10.1007/BF02570894
- Dikranjan D.N., Shakhmatov D.B., Algebraic structure of the pseudocompact groups, 1991, Report 91–19, pp. 1–37; York University, Ontario, Canada.
- Dikranjan D., Giordano Bruno A., Milan C., 10.4995/agt.2006.1930, Appl. Gen. Topol. 7 (2006), 1–39. Zbl1127.22003MR2284933DOI10.4995/agt.2006.1930
- van Douwen E.K., 10.1090/S0002-9939-1980-0587954-5, Proc. Amer. Math. Soc. 80 (1980), 678–682. Zbl0446.54011MR0587954DOI10.1090/S0002-9939-1980-0587954-5
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Fuchs L., Infinite Abelian Groups. Vol. I, Academic Press, New York, 1970. Zbl0338.20063MR0255673
- Galindo J., Dense pseudocompact subgroups and finer pseudocompact group topologies, Scientiae Math. Japonicae 55 (2002), 627–640. Zbl1011.54032MR1901051
- Glicksberg I., 10.1215/S0012-7094-52-01926-1, Duke Math. J. 19 (1952), 253–261. Zbl0048.09004MR0050168DOI10.1215/S0012-7094-52-01926-1
- Halmos P.R., Naive Set Theory, Springer-Verlag, New York–Heidelberg–Berlin, 1960. Zbl0287.04001MR0114756
- Hewitt E., 10.1090/S0002-9947-1948-0026239-9, Trans. Amer. Math. Soc. 64 (1948), 45–99. Zbl0032.28603MR0026239DOI10.1090/S0002-9947-1948-0026239-9
- Hewitt E., Ross K.A., Abstract Harmonic Analysis, vol. I, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0115.10603MR0551496
- Hewitt E., Ross K.A., Abstract Harmonic Analysis, vol. II, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 152, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0830.43001MR0551496
- Kakutani S., Kodaira K., Über das Haarsche Mass in der lokal bikompacten Gruppen, Proc. Imperial Acad. Tokyo 20 (1944), 444–450, reprinted in: Selected papers of Shizuo Kakutani volume 1, edited by Robert R. Kallman, pp. 68–74, Birkhäuser, Boston-Basel-Stuttgart, 1986. MR0014401
- Mycielski J., Some properties of connected compact groups, Colloq. Math. 5 (1958), 162–166. Zbl0088.02802MR0100043
- Ross K.A., Stromberg K.R., 10.1007/BF02591355, Arkiv för Matematik 6 (1967), 151–160. Zbl0147.04501MR0196029DOI10.1007/BF02591355
- de Vries J., Pseudocompactness and the Stone-Čech compactification for topological groups, Nieuw Archief voor Wiskunde (3) 23 (1975), 35–48. Zbl0296.22003MR0401978
- Weil A., Sur les Espaces à Structure Uniforme et sur la Topologie Générale, Publ. Math. Univ. Strasbourg, vol. 551, Hermann & Cie, Paris, 1938. Zbl0019.18604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.