Extremal pseudocompact Abelian groups: A unified treatment

William Wistar Comfort; Jan van Mill

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 197-217
  • ISSN: 0010-2628

Abstract

top
The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.

How to cite

top

Comfort, William Wistar, and van Mill, Jan. "Extremal pseudocompact Abelian groups: A unified treatment." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 197-217. <http://eudml.org/doc/252484>.

@article{Comfort2013,
abstract = {The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.},
author = {Comfort, William Wistar, van Mill, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup; abelian; pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup},
language = {eng},
number = {2},
pages = {197-217},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extremal pseudocompact Abelian groups: A unified treatment},
url = {http://eudml.org/doc/252484},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Comfort, William Wistar
AU - van Mill, Jan
TI - Extremal pseudocompact Abelian groups: A unified treatment
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 197
EP - 217
AB - The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.
LA - eng
KW - pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup; abelian; pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup
UR - http://eudml.org/doc/252484
ER -

References

top
  1. Arhangel'skii A., Tkachenko M., Topological Groups and Related Structures, Atlantis Studies in Mathematics, 1, Atlantis Press, Paris and World Scientific Publ. Co., Hackensack, New Jersey, 2008. MR2433295
  2. Comfort W.W., Topological groups, in: Handbook of Set-theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), pp. 1143–1263, North-Holland, Amsterdam, 1984. Zbl1071.54019MR0776643
  3. Comfort W.W., Tampering with pseudocompact groups, Topology Proc. 28 (2004), 401–424. Zbl1085.54028MR2159734
  4. Comfort W.W., 10.1016/j.topol.2007.09.004, Topology Appl. 155 (2008), 172–179. Zbl1132.54020MR2380255DOI10.1016/j.topol.2007.09.004
  5. Comfort W.W., Jorge Galindo J., 10.1016/j.jpaa.2004.08.018, J. Pure Appl. Algebra 197 (2005), 59–81. MR2123980DOI10.1016/j.jpaa.2004.08.018
  6. Comfort W.W., Remus D., 10.1007/BF02571718, Math. Z. 215 (1994), 337–346. Zbl0790.54051MR1262521DOI10.1007/BF02571718
  7. Comfort W.W., Gladdines H., van Mill J., Proper pseudocompact subgroups of pseudocompact Abelian groups, in: Papers on General Topology and Applications, Annals of the New York Academy of Sciences 728 (1994), 237–247. [Note: This is Proc. June, 1992 Queens College Summer Conference on General Topology and Applications (Susan Andima, Gerald Itzkowitz, T. Yung Kong, Ralph Kopperman, Prabud Ram Misra, Lawrence Narici, and Aaron Todd, eds.).]. Zbl0915.54029MR1467777
  8. Comfort W.W., van Mill J., 10.1016/0166-8641(89)90086-2, Topology Appl. 33 (1989), 21–45. Zbl0698.54003MR1020981DOI10.1016/0166-8641(89)90086-2
  9. Comfort W.W., van Mill J., 10.1090/S0002-9939-07-08952-6, Proc. Amer. Math. Soc. 135 (2007), 4039–4044. Zbl1138.22002MR2341956DOI10.1090/S0002-9939-07-08952-6
  10. Comfort W.W., Robertson L.C., 10.1090/S0002-9939-1982-0663891-4, Proc. Amer. Math. Soc 86 (1982), 173–178. Zbl0508.22002MR0663891DOI10.1090/S0002-9939-1982-0663891-4
  11. Comfort W.W., Robertson L.C., 10.2140/pjm.1985.119.265, Pacific J. Math. 119 (1985), 265–285. MR0803119DOI10.2140/pjm.1985.119.265
  12. Comfort W.W., Robertson L.C., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 48 pages; Rozprawy Mat. Polish Scientific Publishers, Warszawa, 1988. Zbl0703.22002MR0959432
  13. Comfort W.W., Ross K.A., 10.2140/pjm.1966.16.483, Pacific J. Math. 16 (1966), 483–496. Zbl0214.28502MR0207886DOI10.2140/pjm.1966.16.483
  14. Comfort W.W., Soundararajan T., 10.2140/pjm.1982.100.61, Pacific J. Math. 100 (1982), 61–84. Zbl0451.22002MR0661441DOI10.2140/pjm.1982.100.61
  15. Dikranjan D.N., Shakhmatov D.B., 10.1007/BF02570894, Math. Z. 204 (1990), 583–603. Zbl0685.22001MR1062137DOI10.1007/BF02570894
  16. Dikranjan D.N., Shakhmatov D.B., Algebraic structure of the pseudocompact groups, 1991, Report 91–19, pp. 1–37; York University, Ontario, Canada. 
  17. Dikranjan D., Giordano Bruno A., Milan C., 10.4995/agt.2006.1930, Appl. Gen. Topol. 7 (2006), 1–39. Zbl1127.22003MR2284933DOI10.4995/agt.2006.1930
  18. van Douwen E.K., 10.1090/S0002-9939-1980-0587954-5, Proc. Amer. Math. Soc. 80 (1980), 678–682. Zbl0446.54011MR0587954DOI10.1090/S0002-9939-1980-0587954-5
  19. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  20. Fuchs L., Infinite Abelian Groups. Vol. I, Academic Press, New York, 1970. Zbl0338.20063MR0255673
  21. Galindo J., Dense pseudocompact subgroups and finer pseudocompact group topologies, Scientiae Math. Japonicae 55 (2002), 627–640. Zbl1011.54032MR1901051
  22. Glicksberg I., 10.1215/S0012-7094-52-01926-1, Duke Math. J. 19 (1952), 253–261. Zbl0048.09004MR0050168DOI10.1215/S0012-7094-52-01926-1
  23. Halmos P.R., Naive Set Theory, Springer-Verlag, New York–Heidelberg–Berlin, 1960. Zbl0287.04001MR0114756
  24. Hewitt E., 10.1090/S0002-9947-1948-0026239-9, Trans. Amer. Math. Soc. 64 (1948), 45–99. Zbl0032.28603MR0026239DOI10.1090/S0002-9947-1948-0026239-9
  25. Hewitt E., Ross K.A., Abstract Harmonic Analysis, vol. I, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. Zbl0115.10603MR0551496
  26. Hewitt E., Ross K.A., Abstract Harmonic Analysis, vol. II, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 152, Springer-Verlag, Berlin-Heidelberg-New York, 1970. Zbl0830.43001MR0551496
  27. Kakutani S., Kodaira K., Über das Haarsche Mass in der lokal bikompacten Gruppen, Proc. Imperial Acad. Tokyo 20 (1944), 444–450, reprinted in: Selected papers of Shizuo Kakutani volume 1, edited by Robert R. Kallman, pp. 68–74, Birkhäuser, Boston-Basel-Stuttgart, 1986. MR0014401
  28. Mycielski J., Some properties of connected compact groups, Colloq. Math. 5 (1958), 162–166. Zbl0088.02802MR0100043
  29. Ross K.A., Stromberg K.R., 10.1007/BF02591355, Arkiv för Matematik 6 (1967), 151–160. Zbl0147.04501MR0196029DOI10.1007/BF02591355
  30. de Vries J., Pseudocompactness and the Stone-Čech compactification for topological groups, Nieuw Archief voor Wiskunde (3) 23 (1975), 35–48. Zbl0296.22003MR0401978
  31. Weil A., Sur les Espaces à Structure Uniforme et sur la Topologie Générale, Publ. Math. Univ. Strasbourg, vol. 551, Hermann & Cie, Paris, 1938. Zbl0019.18604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.