Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees
Jernej Azarija; Riste Škrekovski
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 121-131
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topReferences
top- Baron, G., Boesch, F., Prodinger, H., Tichy, R. F., Wang, J., The number of spanning trees in the square of cycle, Fibonacci Q. 23 (1985), 258-264. (1985) MR0806296
- Cayley, G. A., A theorem on trees, Quart. J. Math. 23 (1889), 276-378. (1889)
- Chowla, S., 10.1093/qmath/os-5.1.304, Quart. J. Math. 5 (1934), 304-307. (1934) Zbl0011.01001DOI10.1093/qmath/os-5.1.304
- Clark, P., Private communication, http://mathoverflow.net/questions/20955/the-missing-euler-idoneal-numbers, .
- Gauss, C. F., Disquisitiones Arithmeticae, Translated from the Latin by A. A. Clarke, 1966, Springer, New York (1986), English. (1986) Zbl0585.10001MR0837656
- Kirchhoff, G. G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847), 497-508. (1847)
- Sedláček, J., 10.4153/CMB-1970-093-0, Canad. Math. Bull. 13 (1970), 515-517. (1970) Zbl0202.23501MR0272672DOI10.4153/CMB-1970-093-0
- Nebeský, L., On the minimum number of vertices and edges in a graph with a given number of spanning trees, Čas. Pěst. Mat. 98 (1973), 95-97. (1973) Zbl0251.05120MR0317998
- Weil, A., Number Theory: An Approach Through History from Hammurapi to Legendre, Birkhäuser, Boston (1984). (1984) Zbl0531.10001MR0734177
- Weinberger, P., 10.4064/aa-22-2-117-124, Acta Arith. 22 (1973), 117-124. (1973) Zbl0217.04202MR0313221DOI10.4064/aa-22-2-117-124
- Wesstein, E. W., Idoneal Number, MathWorld---A Wolfram Web Resource, http:// mathworld.wolfram.com/IdonealNumber.html.