Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees
Jernej Azarija; Riste Škrekovski
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 121-131
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAzarija, Jernej, and Škrekovski, Riste. "Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees." Mathematica Bohemica 138.2 (2013): 121-131. <http://eudml.org/doc/252492>.
@article{Azarija2013,
abstract = {Let $\alpha (n)$ be the least number $k$ for which there exists a simple graph with $k$ vertices having precisely $n \ge 3$ spanning trees. Similarly, define $\beta (n)$ as the least number $k$ for which there exists a simple graph with $k$ edges having precisely $n \ge 3$ spanning trees. As an $n$-cycle has exactly $n$ spanning trees, it follows that $\alpha (n),\beta (n) \le n$. In this paper, we show that $\alpha (n) \le \frac\{1\}\{3\}(n+4)$ and $\beta (n) \le \frac\{1\}\{3\}(n+7) $ if and only if $n \notin \lbrace 3,4,5,6,7,9,10,13,18,22\rbrace $, which is a subset of Euler’s idoneal numbers. Moreover, if $n \lnot \equiv 2 \hspace\{4.44443pt\}(\@mod \; 3)$ and $n \ne 25$ we show that $\alpha (n) \le \frac\{1\}\{4\}(n+9)$ and $\beta (n) \le \frac\{1\}\{4\}(n+13).$ This improves some previously estabilished bounds.},
author = {Azarija, Jernej, Škrekovski, Riste},
journal = {Mathematica Bohemica},
keywords = {number of spanning trees; extremal graph; spanning tree},
language = {eng},
number = {2},
pages = {121-131},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees},
url = {http://eudml.org/doc/252492},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Azarija, Jernej
AU - Škrekovski, Riste
TI - Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 121
EP - 131
AB - Let $\alpha (n)$ be the least number $k$ for which there exists a simple graph with $k$ vertices having precisely $n \ge 3$ spanning trees. Similarly, define $\beta (n)$ as the least number $k$ for which there exists a simple graph with $k$ edges having precisely $n \ge 3$ spanning trees. As an $n$-cycle has exactly $n$ spanning trees, it follows that $\alpha (n),\beta (n) \le n$. In this paper, we show that $\alpha (n) \le \frac{1}{3}(n+4)$ and $\beta (n) \le \frac{1}{3}(n+7) $ if and only if $n \notin \lbrace 3,4,5,6,7,9,10,13,18,22\rbrace $, which is a subset of Euler’s idoneal numbers. Moreover, if $n \lnot \equiv 2 \hspace{4.44443pt}(\@mod \; 3)$ and $n \ne 25$ we show that $\alpha (n) \le \frac{1}{4}(n+9)$ and $\beta (n) \le \frac{1}{4}(n+13).$ This improves some previously estabilished bounds.
LA - eng
KW - number of spanning trees; extremal graph; spanning tree
UR - http://eudml.org/doc/252492
ER -
References
top- Baron, G., Boesch, F., Prodinger, H., Tichy, R. F., Wang, J., The number of spanning trees in the square of cycle, Fibonacci Q. 23 (1985), 258-264. (1985) MR0806296
- Cayley, G. A., A theorem on trees, Quart. J. Math. 23 (1889), 276-378. (1889)
- Chowla, S., 10.1093/qmath/os-5.1.304, Quart. J. Math. 5 (1934), 304-307. (1934) Zbl0011.01001DOI10.1093/qmath/os-5.1.304
- Clark, P., Private communication, http://mathoverflow.net/questions/20955/the-missing-euler-idoneal-numbers, .
- Gauss, C. F., Disquisitiones Arithmeticae, Translated from the Latin by A. A. Clarke, 1966, Springer, New York (1986), English. (1986) Zbl0585.10001MR0837656
- Kirchhoff, G. G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847), 497-508. (1847)
- Sedláček, J., 10.4153/CMB-1970-093-0, Canad. Math. Bull. 13 (1970), 515-517. (1970) Zbl0202.23501MR0272672DOI10.4153/CMB-1970-093-0
- Nebeský, L., On the minimum number of vertices and edges in a graph with a given number of spanning trees, Čas. Pěst. Mat. 98 (1973), 95-97. (1973) Zbl0251.05120MR0317998
- Weil, A., Number Theory: An Approach Through History from Hammurapi to Legendre, Birkhäuser, Boston (1984). (1984) Zbl0531.10001MR0734177
- Weinberger, P., 10.4064/aa-22-2-117-124, Acta Arith. 22 (1973), 117-124. (1973) Zbl0217.04202MR0313221DOI10.4064/aa-22-2-117-124
- Wesstein, E. W., Idoneal Number, MathWorld---A Wolfram Web Resource, http:// mathworld.wolfram.com/IdonealNumber.html.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.