The two-parameter class of Schröder inversions
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 1, page 5-19
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSchröder, J.. "The two-parameter class of Schröder inversions." Commentationes Mathematicae Universitatis Carolinae 54.1 (2013): 5-19. <http://eudml.org/doc/252495>.
@article{Schröder2013,
abstract = {Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated.},
author = {Schröder, J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized Schröder numbers; coordination numbers; crystal ball numbers; stretched Riordan array; triangular matrix; sequence transformation; inversion; left-inverse; generalized Schröder numbers; coordination number; crystal ball number; stretched Riordan array; triangular matrix; sequence transformation; inversion},
language = {eng},
number = {1},
pages = {5-19},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The two-parameter class of Schröder inversions},
url = {http://eudml.org/doc/252495},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Schröder, J.
TI - The two-parameter class of Schröder inversions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 1
SP - 5
EP - 19
AB - Infinite lower triangular matrices of generalized Schröder numbers are used to construct a two-parameter class of invertible sequence transformations. Their inverses are given by triangular matrices of coordination numbers. The two-parameter class of Schröder transformations is merged into a one-parameter class of stretched Riordan arrays, the left-inverses of which consist of matrices of crystal ball numbers. Schröder and inverse Schröder transforms of important sequences are calculated.
LA - eng
KW - generalized Schröder numbers; coordination numbers; crystal ball numbers; stretched Riordan array; triangular matrix; sequence transformation; inversion; left-inverse; generalized Schröder numbers; coordination number; crystal ball number; stretched Riordan array; triangular matrix; sequence transformation; inversion
UR - http://eudml.org/doc/252495
ER -
References
top- Aigner M., Diskrete Mathematik, Vieweg, Braunschweig, 1993. Zbl1109.05001MR1243412
- Bernstein M., Sloane N.J.A., Some canocial sequences of integers, Linear Algebra Appl. 226–228, (1995), 57–72. MR1344554
- Bower C.G., transforms2, ; http://oeis.org/transforms2.html as from August 2011, published electronically.
- Conway J.H., Sloane N.J.A., 10.1098/rspa.1997.0126, Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci. 453 (1997), 2369–2389; {citeseer.ist.psu.edu/article/conway96lowdimensional.html}. Zbl1066.11505MR1480120DOI10.1098/rspa.1997.0126
- Corsani C., Merlini D., Sprugnoli R., 10.1016/S0012-365X(97)00110-6, Discrete Math. 180 (1998), 107–122. Zbl0903.05005MR1603705DOI10.1016/S0012-365X(97)00110-6
- Gould H.W., Hsu L.C., 10.1215/S0012-7094-73-04082-9, Duke Math. J. 40 (1973), 885–891. MR0337652DOI10.1215/S0012-7094-73-04082-9
- Krattenthaler C., 10.1090/S0002-9939-96-03042-0, Proc. Amer. Math. Soc. 124 (1996), 47–59. Zbl0843.15005MR1291781DOI10.1090/S0002-9939-96-03042-0
- Riordan J., Combinatorial Identities, Wiley, New York, 1968. Zbl0517.05006MR0231725
- Riordan J., 10.2307/2312584, Amer. Math. Monthly 71 (1964), 485–498. Zbl0128.01603MR0169791DOI10.2307/2312584
- Schröder E., Vier combinatorische Probleme, Z. Math. Phys. 15 (1870), 361–376.
- Schröder J., Generalized Schröder numbers and the rotation principle, ; J. Integer Seq. 10 (2007), 1–15, Article 07.7.7, http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schroder/schroder45.pdf. MR2346050
- Sloane N.J.A., transforms, ; http://oeis.org/transforms.html as from August 2011, published electronically.
- Sloane N.J.A., and Mathematical Community, The On-Line Encyclopedia of Integer Sequences, ; http://www.research.att.com/ njas/sequences/.
- Sprugnoli R., 10.1016/0012-365X(92)00570-H, Discrete Math. 132 (1994), 267–290. Zbl0814.05003MR1297386DOI10.1016/0012-365X(92)00570-H
- Stanley R.P., Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl0978.05002MR1676282
- Sulanke R.A., A recurrence restricted by a diagonal condition: generalized Catalan arrays, Fibonacci Q. 27 (1989), 33–46. Zbl0666.10008MR0981063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.