Slant and pseudo-slant submanifolds in LCS -manifolds

Mehmet Atçeken; Shyamal Kumar Hui

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 1, page 177-190
  • ISSN: 0011-4642

Abstract

top
We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.

How to cite

top

Atçeken, Mehmet, and Kumar Hui, Shyamal. "Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds." Czechoslovak Mathematical Journal 63.1 (2013): 177-190. <http://eudml.org/doc/252505>.

@article{Atçeken2013,
abstract = {We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.},
author = {Atçeken, Mehmet, Kumar Hui, Shyamal},
journal = {Czechoslovak Mathematical Journal},
keywords = {slant submanifold; pseudo-slant submanifold; $\{\rm LCS\}$-manifold; slant submanifold; pseudo-slant submanifold; -manifold},
language = {eng},
number = {1},
pages = {177-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Slant and pseudo-slant submanifolds in $\{\rm LCS\}$-manifolds},
url = {http://eudml.org/doc/252505},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Atçeken, Mehmet
AU - Kumar Hui, Shyamal
TI - Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 177
EP - 190
AB - We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.
LA - eng
KW - slant submanifold; pseudo-slant submanifold; ${\rm LCS}$-manifold; slant submanifold; pseudo-slant submanifold; -manifold
UR - http://eudml.org/doc/252505
ER -

References

top
  1. Atçeken, M., 10.1016/S0252-9602(10)60039-2, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 215-224. (2010) MR2658956DOI10.1016/S0252-9602(10)60039-2
  2. Bishop, R. L., O'Neill, B., 10.1090/S0002-9947-1969-0251664-4, Trans. Am. Math. Soc. 145 (1969), 1-49. (1969) Zbl0191.52002MR0251664DOI10.1090/S0002-9947-1969-0251664-4
  3. Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M., 10.1023/A:1005241320631, Geom. Dedicata 78 (1999), 183-199. (1999) Zbl0944.53028MR1722833DOI10.1023/A:1005241320631
  4. Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M., Structure on a slant submanifold of a contact manifold, Indian J. Pure Appl. Math. 31 (2000), 857-864. (2000) Zbl0984.53034MR1779445
  5. Carriazo, A., Fernández, L. M., Hans-Uber, M. B., 10.1007/s10474-005-0195-x, Acta Math. Hung. 107 (2005), 267-285. (2005) Zbl1120.53027MR2150790DOI10.1007/s10474-005-0195-x
  6. Chen, B. Y., Geometry of Slant Submanifolds, Kath. Univ. Leuven, Dept. of Mathematics Leuven (1990). (1990) Zbl0716.53006MR1099374
  7. Khan, V. A., Khan, M. A., Pseudo-slant submanifolds of a Sasakian manifold, Indian J. Pure Appl. Math. 38 (2007), 31-42. (2007) Zbl1117.53043MR2333574
  8. Lotta, A., Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 39 (1996), 183-198. (1996) Zbl0885.53058
  9. Matsumoto, K., Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor, New Ser. 47 (1988), 189-197. (1988) Zbl0679.53034MR1004844
  10. Mihai, I., Chen, B. Y., 10.1007/s10474-008-8033-6, Acta Math. Hung. 122 (2009), 307-328. (2009) Zbl1199.53167MR2481783DOI10.1007/s10474-008-8033-6
  11. Papaghiuc, N., Semi-slant submanifolds of a Kaehlerian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouǎ, Mat. 40 (1994), 55-61. (1994) Zbl0847.53012MR1328947
  12. Shaikh, A. A., On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), 305-314. (2003) Zbl1054.53056MR1983436
  13. Shaikh, A. A., Baishya, K. K., 10.3844/jmssp.2005.129.132, J. Math. Stat. 1 (2005), 129-132. (2005) Zbl1142.53326MR2197611DOI10.3844/jmssp.2005.129.132
  14. Shaikh, A. A., Kim, H. Y., Hui, S. K., 10.4134/JKMS.2011.48.4.669, J. Korean Math. Soc. 48 (2011), 669-689. (2011) Zbl1227.53030MR2840519DOI10.4134/JKMS.2011.48.4.669
  15. Yano, K., Concircular geometry. 1. Concircular transformations, Proc. Imp. Acad. Jap. 16 (1940), 195-200. (1940) Zbl0024.08102MR0003113

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.