An intersection theorem for set-valued mappings
Ravi P. Agarwal; Mircea Balaj; Donal O'Regan
Applications of Mathematics (2013)
- Volume: 58, Issue: 3, page 269-278
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topP. Agarwal, Ravi, Balaj, Mircea, and O'Regan, Donal. "An intersection theorem for set-valued mappings." Applications of Mathematics 58.3 (2013): 269-278. <http://eudml.org/doc/252514>.
@article{P2013,
abstract = {Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.},
author = {P. Agarwal, Ravi, Balaj, Mircea, O'Regan, Donal},
journal = {Applications of Mathematics},
keywords = {intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem},
language = {eng},
number = {3},
pages = {269-278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An intersection theorem for set-valued mappings},
url = {http://eudml.org/doc/252514},
volume = {58},
year = {2013},
}
TY - JOUR
AU - P. Agarwal, Ravi
AU - Balaj, Mircea
AU - O'Regan, Donal
TI - An intersection theorem for set-valued mappings
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 269
EP - 278
AB - Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
LA - eng
KW - intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem
UR - http://eudml.org/doc/252514
ER -
References
top- Agarwal, R. P., Balaj, M., O'Regan, D., 10.1080/00036810903331874, Appl. Anal. 88 (2009), 1691-1699. (2009) Zbl1223.47057MR2588412DOI10.1080/00036810903331874
- Aliprantis, C. D., Border, K. C., Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed, Springer Berlin (2006). (2006) Zbl1156.46001MR2378491
- Ansari, Q. H., Farajzadeh, A. P., Schaible, S., 10.1007/s10898-008-9375-x, J. Glob. Optim. 45 (2009), 297-307. (2009) Zbl1226.49015MR2539162DOI10.1007/s10898-008-9375-x
- Ansari, Q. H., Yao, J. C., 10.1016/S0893-9659(99)00121-4, Appl. Math. Lett. 12 (1999), 53-56. (1999) Zbl1014.49008MR1751352DOI10.1016/S0893-9659(99)00121-4
- Balaj, M., 10.1016/j.jmaa.2007.02.065, J. Math. Anal. Appl. 336 (2007), 363-371. (2007) Zbl1124.49019MR2348511DOI10.1016/j.jmaa.2007.02.065
- Balaj, M., 10.36045/bbms/1292334066, Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. (2010) Zbl1213.54061MR2777781DOI10.36045/bbms/1292334066
- Balaj, M., O'Regan, D., 10.4134/JKMS.2010.47.5.1017, J. Korean Math. Soc. 47 (2010), 1017-1029. (2010) Zbl1203.47092MR2723006DOI10.4134/JKMS.2010.47.5.1017
- Fan, K., 10.1007/BF01353421, Math. Ann. 142 (1961), 305-310. (1961) Zbl0093.36701MR0131268DOI10.1007/BF01353421
- Farajzadeh, A. P., Noor, M. A., Zainab, S., 10.1007/s10898-008-9368-9, J. Glob. Optim. 45 (2009), 229-235. (2009) Zbl1193.90204MR2539158DOI10.1007/s10898-008-9368-9
- Himmelberg, C. J., 10.1016/0022-247X(72)90128-X, J. Math. Anal. Appl. 38 (1972), 205-207. (1972) Zbl0225.54049MR0303368DOI10.1016/0022-247X(72)90128-X
- Jeyakumar, V., Oettli, W., Natividad, M., 10.1006/jmaa.1993.1368, J. Math. Anal. Appl. 179 (1993), 537-546. (1993) Zbl0791.46002MR1249837DOI10.1006/jmaa.1993.1368
- Khan, S. A., 10.1007/s10898-010-9557-1, J. Glob. Optim. 49 (2011), 695-705. (2011) Zbl1242.90261MR2781983DOI10.1007/s10898-010-9557-1
- Khanh, P. Q., Quan, N. H., 10.1080/02331930903500324, Optimization 59 (2010), 115-124. (2010) Zbl1185.49007MR2765472DOI10.1080/02331930903500324
- Köthe, G., Topological Vector Spaces I, Springer Berlin (1969). (1969) MR0248498
- Lan, K. Q., 10.1016/j.camwa.2004.03.003, Comput. Math. Appl. 48 (2004), 725-729. (2004) Zbl1060.49016MR2105247DOI10.1016/j.camwa.2004.03.003
- Lee, B. S., Farajzadeh, A. P., 10.1016/j.aml.2007.12.008, Appl. Math. Lett. 21 (2008), 1095-1100. (2008) Zbl1211.90249MR2450657DOI10.1016/j.aml.2007.12.008
- Lu, H., Tang, D., 10.1016/j.jmaa.2005.03.085, J. Math. Anal. Appl. 312 (2005), 343-356. (2005) Zbl1090.47045MR2175223DOI10.1016/j.jmaa.2005.03.085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.