An intersection theorem for set-valued mappings

Ravi P. Agarwal; Mircea Balaj; Donal O'Regan

Applications of Mathematics (2013)

  • Volume: 58, Issue: 3, page 269-278
  • ISSN: 0862-7940

Abstract

top
Given a nonempty convex set X in a locally convex Hausdorff topological vector space, a nonempty set Y and two set-valued mappings T : X X , S : Y X we prove that under suitable conditions one can find an x X which is simultaneously a fixed point for T and a common point for the family of values of S . Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.

How to cite

top

P. Agarwal, Ravi, Balaj, Mircea, and O'Regan, Donal. "An intersection theorem for set-valued mappings." Applications of Mathematics 58.3 (2013): 269-278. <http://eudml.org/doc/252514>.

@article{P2013,
abstract = {Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.},
author = {P. Agarwal, Ravi, Balaj, Mircea, O'Regan, Donal},
journal = {Applications of Mathematics},
keywords = {intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem},
language = {eng},
number = {3},
pages = {269-278},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An intersection theorem for set-valued mappings},
url = {http://eudml.org/doc/252514},
volume = {58},
year = {2013},
}

TY - JOUR
AU - P. Agarwal, Ravi
AU - Balaj, Mircea
AU - O'Regan, Donal
TI - An intersection theorem for set-valued mappings
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 269
EP - 278
AB - Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
LA - eng
KW - intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem
UR - http://eudml.org/doc/252514
ER -

References

top
  1. Agarwal, R. P., Balaj, M., O'Regan, D., 10.1080/00036810903331874, Appl. Anal. 88 (2009), 1691-1699. (2009) Zbl1223.47057MR2588412DOI10.1080/00036810903331874
  2. Aliprantis, C. D., Border, K. C., Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed, Springer Berlin (2006). (2006) Zbl1156.46001MR2378491
  3. Ansari, Q. H., Farajzadeh, A. P., Schaible, S., 10.1007/s10898-008-9375-x, J. Glob. Optim. 45 (2009), 297-307. (2009) Zbl1226.49015MR2539162DOI10.1007/s10898-008-9375-x
  4. Ansari, Q. H., Yao, J. C., 10.1016/S0893-9659(99)00121-4, Appl. Math. Lett. 12 (1999), 53-56. (1999) Zbl1014.49008MR1751352DOI10.1016/S0893-9659(99)00121-4
  5. Balaj, M., 10.1016/j.jmaa.2007.02.065, J. Math. Anal. Appl. 336 (2007), 363-371. (2007) Zbl1124.49019MR2348511DOI10.1016/j.jmaa.2007.02.065
  6. Balaj, M., 10.36045/bbms/1292334066, Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. (2010) Zbl1213.54061MR2777781DOI10.36045/bbms/1292334066
  7. Balaj, M., O'Regan, D., 10.4134/JKMS.2010.47.5.1017, J. Korean Math. Soc. 47 (2010), 1017-1029. (2010) Zbl1203.47092MR2723006DOI10.4134/JKMS.2010.47.5.1017
  8. Fan, K., 10.1007/BF01353421, Math. Ann. 142 (1961), 305-310. (1961) Zbl0093.36701MR0131268DOI10.1007/BF01353421
  9. Farajzadeh, A. P., Noor, M. A., Zainab, S., 10.1007/s10898-008-9368-9, J. Glob. Optim. 45 (2009), 229-235. (2009) Zbl1193.90204MR2539158DOI10.1007/s10898-008-9368-9
  10. Himmelberg, C. J., 10.1016/0022-247X(72)90128-X, J. Math. Anal. Appl. 38 (1972), 205-207. (1972) Zbl0225.54049MR0303368DOI10.1016/0022-247X(72)90128-X
  11. Jeyakumar, V., Oettli, W., Natividad, M., 10.1006/jmaa.1993.1368, J. Math. Anal. Appl. 179 (1993), 537-546. (1993) Zbl0791.46002MR1249837DOI10.1006/jmaa.1993.1368
  12. Khan, S. A., 10.1007/s10898-010-9557-1, J. Glob. Optim. 49 (2011), 695-705. (2011) Zbl1242.90261MR2781983DOI10.1007/s10898-010-9557-1
  13. Khanh, P. Q., Quan, N. H., 10.1080/02331930903500324, Optimization 59 (2010), 115-124. (2010) Zbl1185.49007MR2765472DOI10.1080/02331930903500324
  14. Köthe, G., Topological Vector Spaces I, Springer Berlin (1969). (1969) MR0248498
  15. Lan, K. Q., 10.1016/j.camwa.2004.03.003, Comput. Math. Appl. 48 (2004), 725-729. (2004) Zbl1060.49016MR2105247DOI10.1016/j.camwa.2004.03.003
  16. Lee, B. S., Farajzadeh, A. P., 10.1016/j.aml.2007.12.008, Appl. Math. Lett. 21 (2008), 1095-1100. (2008) Zbl1211.90249MR2450657DOI10.1016/j.aml.2007.12.008
  17. Lu, H., Tang, D., 10.1016/j.jmaa.2005.03.085, J. Math. Anal. Appl. 312 (2005), 343-356. (2005) Zbl1090.47045MR2175223DOI10.1016/j.jmaa.2005.03.085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.