A global uniqueness result for fractional order implicit differential equations
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 4, page 605-614
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAbbas, Said, and Benchohra, Mouffak. "A global uniqueness result for fractional order implicit differential equations." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 605-614. <http://eudml.org/doc/252515>.
@article{Abbas2012,
abstract = {In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.},
author = {Abbas, Said, Benchohra, Mouffak},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {partial hyperbolic differential equation; fractional order; left-sided mixed Riemann-Liouville integral; mixed regularized derivative; solution; Fréchet space; fixed point; fractional differential equation of fractional order; Fréchet space; fixed point problem},
language = {eng},
number = {4},
pages = {605-614},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A global uniqueness result for fractional order implicit differential equations},
url = {http://eudml.org/doc/252515},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Abbas, Said
AU - Benchohra, Mouffak
TI - A global uniqueness result for fractional order implicit differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 605
EP - 614
AB - In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.
LA - eng
KW - partial hyperbolic differential equation; fractional order; left-sided mixed Riemann-Liouville integral; mixed regularized derivative; solution; Fréchet space; fixed point; fractional differential equation of fractional order; Fréchet space; fixed point problem
UR - http://eudml.org/doc/252515
ER -
References
top- Abbas S., Agarwal R.P., Benchohra M., Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay, Nonlinear Anal. Hybrid Syst. 4 (2010), 818–829. Zbl1204.35171MR2680249
- Abbas S., Benchohra M., Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62–72. Zbl1178.35371MR2535015
- Abbas S., Benchohra M., 10.7151/dmdico.1116, Discuss. Math. Differ. Incl. Control Optim. 30 (2010), no. 1, 141–161. Zbl1203.26005MR2682404DOI10.7151/dmdico.1116
- Abbas S., Benchohra M., Gorniewicz L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. 72 (2010), 49–60. Zbl1200.26004MR2666846
- Abbas S., Benchohra M., N'Guérékata G.M., 10.1007/978-1-4614-4036-9, Developments in Mathematics, 27, Springer, New York, 2012. MR2962045DOI10.1007/978-1-4614-4036-9
- Abbas S., Benchohra M., Vityuk A.N., On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168–182. MR2897771
- Belarbi A., Benchohra M., Ouahab A., 10.1080/00036810601066350, Appl. Anal. 85 (2006), 1459–1470. Zbl1175.34080MR2282996DOI10.1080/00036810601066350
- Benchohra M., Graef J.R., Hamani S., 10.1080/00036810802307579, Appl. Anal. 87 (2008), no. 7, 851–863. MR2458962DOI10.1080/00036810802307579
- Benchohra M., Hamani S., Ntouyas S.K., Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1–12. Zbl1198.26007MR2390179
- Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. MR2386501DOI10.1016/j.jmaa.2007.06.021
- Frigon M., Granas A., Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22 (1998), no. 2, 161–168. Zbl1100.47514MR1677243
- Henry D., Geometric Theory of Semilinear Parabolic Partial Differential Equations, Springer, Berlin-New York, 1989.
- Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Zbl0998.26002MR1890104
- Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003MR2218073
- Kilbas A.A., Marzan S.A., 10.1007/s10625-005-0137-y, Differ. Equ. 41 (2005), 84–89. Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
- Miller K.S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. MR1219954
- Oldham K.B., Spanier J., The Fractional Calculus, Academic Press, New York, London, 1974. Zbl0292.26011MR0361633
- Podlubny I., Fractional Differential Equation, Academic Press, San Diego, 1999.
- Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. Zbl0818.26003MR1347689
- Vityuk A.N., Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1997), 13–19. MR1485123
- Vityuk A.N., Golushkov A.V., 10.1007/s11072-005-0015-9, Nonlinear Oscil. 7 (2004), no. 3, 318–325. MR2151816DOI10.1007/s11072-005-0015-9
- Vityuk A.N., Mykhailenko A.V., 10.1007/s11072-009-0032-1, Nonlinear Oscil. 11 (2008), no. 3, 307–319. MR2512745DOI10.1007/s11072-009-0032-1
- Vityuk A.N., Mykhailenko A.V., 10.1007/s10958-011-0353-3, J. Math. Sci. 175 (4) (2011), 391–401. MR2977138DOI10.1007/s10958-011-0353-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.