A global uniqueness result for fractional order implicit differential equations

Said Abbas; Mouffak Benchohra

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 4, page 605-614
  • ISSN: 0010-2628

Abstract

top
In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.

How to cite

top

Abbas, Said, and Benchohra, Mouffak. "A global uniqueness result for fractional order implicit differential equations." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 605-614. <http://eudml.org/doc/252515>.

@article{Abbas2012,
abstract = {In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.},
author = {Abbas, Said, Benchohra, Mouffak},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {partial hyperbolic differential equation; fractional order; left-sided mixed Riemann-Liouville integral; mixed regularized derivative; solution; Fréchet space; fixed point; fractional differential equation of fractional order; Fréchet space; fixed point problem},
language = {eng},
number = {4},
pages = {605-614},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A global uniqueness result for fractional order implicit differential equations},
url = {http://eudml.org/doc/252515},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Abbas, Said
AU - Benchohra, Mouffak
TI - A global uniqueness result for fractional order implicit differential equations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 605
EP - 614
AB - In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.
LA - eng
KW - partial hyperbolic differential equation; fractional order; left-sided mixed Riemann-Liouville integral; mixed regularized derivative; solution; Fréchet space; fixed point; fractional differential equation of fractional order; Fréchet space; fixed point problem
UR - http://eudml.org/doc/252515
ER -

References

top
  1. Abbas S., Agarwal R.P., Benchohra M., Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay, Nonlinear Anal. Hybrid Syst. 4 (2010), 818–829. Zbl1204.35171MR2680249
  2. Abbas S., Benchohra M., Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62–72. Zbl1178.35371MR2535015
  3. Abbas S., Benchohra M., 10.7151/dmdico.1116, Discuss. Math. Differ. Incl. Control Optim. 30 (2010), no. 1, 141–161. Zbl1203.26005MR2682404DOI10.7151/dmdico.1116
  4. Abbas S., Benchohra M., Gorniewicz L., Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. 72 (2010), 49–60. Zbl1200.26004MR2666846
  5. Abbas S., Benchohra M., N'Guérékata G.M., 10.1007/978-1-4614-4036-9, Developments in Mathematics, 27, Springer, New York, 2012. MR2962045DOI10.1007/978-1-4614-4036-9
  6. Abbas S., Benchohra M., Vityuk A.N., On fractional order derivatives and Darboux problem for implicit differential equations, Fract. Calc. Appl. Anal. 15 (2) (2012), 168–182. MR2897771
  7. Belarbi A., Benchohra M., Ouahab A., 10.1080/00036810601066350, Appl. Anal. 85 (2006), 1459–1470. Zbl1175.34080MR2282996DOI10.1080/00036810601066350
  8. Benchohra M., Graef J.R., Hamani S., 10.1080/00036810802307579, Appl. Anal. 87 (2008), no. 7, 851–863. MR2458962DOI10.1080/00036810802307579
  9. Benchohra M., Hamani S., Ntouyas S.K., Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1–12. Zbl1198.26007MR2390179
  10. Benchohra M., Henderson J., Ntouyas S.K., Ouahab A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. MR2386501DOI10.1016/j.jmaa.2007.06.021
  11. Frigon M., Granas A., Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet, Ann. Sci. Math. Québec 22 (1998), no. 2, 161–168. Zbl1100.47514MR1677243
  12. Henry D., Geometric Theory of Semilinear Parabolic Partial Differential Equations, Springer, Berlin-New York, 1989. 
  13. Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Zbl0998.26002MR1890104
  14. Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003MR2218073
  15. Kilbas A.A., Marzan S.A., 10.1007/s10625-005-0137-y, Differ. Equ. 41 (2005), 84–89. Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
  16. Miller K.S., Ross B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. MR1219954
  17. Oldham K.B., Spanier J., The Fractional Calculus, Academic Press, New York, London, 1974. Zbl0292.26011MR0361633
  18. Podlubny I., Fractional Differential Equation, Academic Press, San Diego, 1999. 
  19. Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. Zbl0818.26003MR1347689
  20. Vityuk A.N., Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1997), 13–19. MR1485123
  21. Vityuk A.N., Golushkov A.V., 10.1007/s11072-005-0015-9, Nonlinear Oscil. 7 (2004), no. 3, 318–325. MR2151816DOI10.1007/s11072-005-0015-9
  22. Vityuk A.N., Mykhailenko A.V., 10.1007/s11072-009-0032-1, Nonlinear Oscil. 11 (2008), no. 3, 307–319. MR2512745DOI10.1007/s11072-009-0032-1
  23. Vityuk A.N., Mykhailenko A.V., 10.1007/s10958-011-0353-3, J. Math. Sci. 175 (4) (2011), 391–401. MR2977138DOI10.1007/s10958-011-0353-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.