Relations between -regular sets and star complements
Milica Anđelić; Domingos M. Cardoso; Slobodan K. Simić
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 1, page 73-90
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAnđelić, Milica, Cardoso, Domingos M., and Simić, Slobodan K.. "Relations between $(\kappa ,\tau )$-regular sets and star complements." Czechoslovak Mathematical Journal 63.1 (2013): 73-90. <http://eudml.org/doc/252519>.
@article{Anđelić2013,
abstract = {Let $G$ be a finite graph with an eigenvalue $\mu $ of multiplicity $m$. A set $X$ of $m$ vertices in $G$ is called a star set for $\mu $ in $G$ if $\mu $ is not an eigenvalue of the star complement $G\setminus X$ which is the subgraph of $G$ induced by vertices not in $X$. A vertex subset of a graph is $(\kappa ,\tau )$-regular if it induces a $\kappa $-regular subgraph and every vertex not in the subset has $\tau $ neighbors in it. We investigate the graphs having a $(\kappa ,\tau )$-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.},
author = {Anđelić, Milica, Cardoso, Domingos M., Simić, Slobodan K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {eigenvalue; star complement; non-main eigenvalue; Hamiltonian graph; star set; star complement; non-main eigenvalue; Hamiltonian graph},
language = {eng},
number = {1},
pages = {73-90},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relations between $(\kappa ,\tau )$-regular sets and star complements},
url = {http://eudml.org/doc/252519},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Anđelić, Milica
AU - Cardoso, Domingos M.
AU - Simić, Slobodan K.
TI - Relations between $(\kappa ,\tau )$-regular sets and star complements
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 1
SP - 73
EP - 90
AB - Let $G$ be a finite graph with an eigenvalue $\mu $ of multiplicity $m$. A set $X$ of $m$ vertices in $G$ is called a star set for $\mu $ in $G$ if $\mu $ is not an eigenvalue of the star complement $G\setminus X$ which is the subgraph of $G$ induced by vertices not in $X$. A vertex subset of a graph is $(\kappa ,\tau )$-regular if it induces a $\kappa $-regular subgraph and every vertex not in the subset has $\tau $ neighbors in it. We investigate the graphs having a $(\kappa ,\tau )$-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
LA - eng
KW - eigenvalue; star complement; non-main eigenvalue; Hamiltonian graph; star set; star complement; non-main eigenvalue; Hamiltonian graph
UR - http://eudml.org/doc/252519
ER -
References
top- Bell, F. K., Characterizing line graphs by star complements, Linear Algebra Appl. 296 (1999), 15-25. (1999) Zbl0929.05072MR1713270
- Bell, F. K., Simić, S. K., On graphs whose star complement for is a path or cycle, Linear Algebra Appl. 377 (2004), 249-265. (2004) MR2021615
- Cardoso, D. M., Cvetković, D., 10.2298/BMAT0631041C, Bull., Cl. Sci. Math. Nat., Sci. Math. 133 (2006), 41-55. (2006) MR2361111DOI10.2298/BMAT0631041C
- Cardoso, D. M., Rama, P., 10.1023/B:JOTH.0000013552.96026.87, J. Math. Sci., New York 120 (2004), 869-880. (2004) Zbl1079.05072MR2099043DOI10.1023/B:JOTH.0000013552.96026.87
- Cardoso, D. M., Rama, P., 10.1016/j.disc.2005.11.068, Discrete Math. 307 (2007), 1306-1316. (2007) Zbl1118.05059MR2311101DOI10.1016/j.disc.2005.11.068
- Cardoso, D. M., Rama, P., Spectral results on graphs with regularity constraints, Linear Algebra Appl. 423 (2007), 90-98. (2007) Zbl1119.05065MR2312326
- Cardoso, D. M., Sciriha, I., Zerafa, C., Main eigenvalues and -regular sets, Linear Algebra Appl. 423 (2010), 2399-2408. (2010) MR2599869
- Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs. Theory and Application, Pure and Applied Mathematics 87, Academic Press, New York, and VEB Deutscher Verlag der Wissenschaften, Berlin (1980). (1980) Zbl0458.05042MR0572262
- Cvetković, D., Rowlinson, P., Simić, S., Eigenspaces of Graphs. [Paperback reprint of the hardback edition 1997], Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (2008). (2008) Zbl1143.05052MR1440854
- Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608
- Halldórsson, M. M., Kratochvíl, J., Telle, J. A., 10.1016/S0166-218X(99)00124-9, Discrete Appl. Math. 99 (2000), 39-54. (2000) Zbl0939.05063MR1743823DOI10.1016/S0166-218X(99)00124-9
- Haemers, W. H., Peeters, M. J. P., 10.1007/s10623-011-9548-3, Des. Codes Cryptogr., to appear, doi: 10.1007/s10623-011-9548-3. Zbl1254.05102MR2988182DOI10.1007/s10623-011-9548-3
- Neumaier, A., Regular sets and quasi-symmetric 2-designs, Combinatorial theory, Proc. Conf., Schloss Rauischholzhausen 1982, Lect. Notes Math. 969 (1982), 258-275. (1982) Zbl0497.05014MR0692246
- Rowlinson, P., Star complements in finite graphs: A survey, Rend. Semin. Mat. Messina, Ser. II 8 (2002), 145-162. (2002) Zbl1042.05061MR1964838
- Rowlinson, P., Co-cliques and star complements in extremal strongly regular graphs, Linear Algebra Appl. 421 (2007), 157-162. (2007) Zbl1116.05052MR2290694
- Rowlinson, P., 10.1007/s10958-012-0736-0, J. Math. Sci., New York 182 (2012), 159-163. (2012) Zbl1254.05160MR3141336DOI10.1007/s10958-012-0736-0
- Rowlinson, P., 10.2298/AADM0702445R, Appl. Anal. Discrete Math. 1 (2007), 445-471. (2007) Zbl1199.05241MR2355287DOI10.2298/AADM0702445R
- Rowlinson, P., 10.1016/j.laa.2011.08.020, Linear Algebra Appl. 436 (2012), 1482-1488. (2012) Zbl1236.05211MR2890932DOI10.1016/j.laa.2011.08.020
- Telle, J. A., Characterization of domination-type parameters in graphs, Congr. Numerantium 94 (1993), 9-16. (1993) Zbl0801.05058MR1267255
- Thompson, D. M., Eigengraphs: constructing strongly regular graphs with block designs, Util. Math. 20 (1981), 83-115. (1981) Zbl0494.05043MR0639883
- Zhang, F., Matrix Theory. Basic Results and Techniques, Universitext. Springer, New York (1999). (1999) Zbl0948.15001MR1691203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.