Free non-archimedean topological groups

Michael Megrelishvili; Menachem Shlossberg

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 273-312
  • ISSN: 0010-2628

Abstract

top
We study free topological groups defined over uniform spaces in some subclasses of the class 𝐍𝐀 of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean 𝐍𝐀 groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian 𝐍𝐀 groups frequently remain continuous. One of the main applications is: any epimorphism in the category 𝐍𝐀 must be dense. Moreover, the same methods improve the following result of T.H. Fay [Fay]: the inclusion of a proper open subgroup H G 𝐓𝐆𝐑 is not an epimorphism in the category 𝐓𝐆𝐑 of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262]. Our results provide a convenient way to produce surjectively universal 𝐍𝐀 abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [Graev ultrametrics and surjectively universal non-Archimedean Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].

How to cite

top

Megrelishvili, Michael, and Shlossberg, Menachem. "Free non-archimedean topological groups." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 273-312. <http://eudml.org/doc/252529>.

@article{Megrelishvili2013,
abstract = {We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf \{NA\}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf \{NA\}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf \{NA\}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf \{NA\}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay [Fay]: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf \{TGR\}$ is not an epimorphism in the category $\mathbf \{TGR\}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262]. Our results provide a convenient way to produce surjectively universal $\mathbf \{NA\}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [Graev ultrametrics and surjectively universal non-Archimedean Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].},
author = {Megrelishvili, Michael, Shlossberg, Menachem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {epimorphisms; free profinite group; free topological $G$-group; non-archimedean group; ultra-metric; ultra-norm; -free topological group of a uniform space; non-archimedean group; non-archimedean uniform space; metrizability; epimorphism; automorphizable actions; surjectively universal group},
language = {eng},
number = {2},
pages = {273-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free non-archimedean topological groups},
url = {http://eudml.org/doc/252529},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Megrelishvili, Michael
AU - Shlossberg, Menachem
TI - Free non-archimedean topological groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 273
EP - 312
AB - We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf {NA}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf {NA}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf {NA}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf {NA}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay [Fay]: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf {TGR}$ is not an epimorphism in the category $\mathbf {TGR}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262]. Our results provide a convenient way to produce surjectively universal $\mathbf {NA}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [Graev ultrametrics and surjectively universal non-Archimedean Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].
LA - eng
KW - epimorphisms; free profinite group; free topological $G$-group; non-archimedean group; ultra-metric; ultra-norm; -free topological group of a uniform space; non-archimedean group; non-archimedean uniform space; metrizability; epimorphism; automorphizable actions; surjectively universal group
UR - http://eudml.org/doc/252529
ER -

References

top
  1. Arens R., Eells J., 10.2140/pjm.1956.6.397, Pacific J. Math. 6 (1956), 397–403. Zbl0073.39601MR0081458DOI10.2140/pjm.1956.6.397
  2. Arhangel'skii A., Tkachenko M., Topological groups and related structures, Atlantis Studies in Mathematics, 1, Series Editor: J. van Mill, Atlantis Press, World Scientific, Amsterdam-Paris, 2008. MR2433295
  3. Becker H., Kechris A., The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Notes Ser., 232, Cambridge University Press, Cambridge, 1996. Zbl0949.54052MR1425877
  4. Dierolf S., Roelcke W., Uniform Structures in Topological Groups and their Quotients, McGraw-Hill, New York, 1981. 
  5. Dikranjan D., Tholen W., Categorical Structure of Closure Operators with Applications to Topology, Algebra and Discrete Mathematics, Mathematics and its Applications, 346, Kluwer Academic Publ., Dordrecht, 1995. Zbl0853.18002MR1368854
  6. Dikranjan D., 10.1016/S0166-8641(97)00141-7, Topology Appl. 85 (1998), 53–91. Zbl0983.54037MR1617454DOI10.1016/S0166-8641(97)00141-7
  7. Dikranjan D., Megrelishvili M., Minimality properties in topological groups, in Recent Progress in General Topology III(to appear). 
  8. Dikranjan D., Tkachenko M., 10.1016/S0166-8641(99)00235-7, Topology Appl. 112 (2001), 259–287. Zbl0979.54038MR1824163DOI10.1016/S0166-8641(99)00235-7
  9. Ding L., 10.1016/j.aim.2012.06.029, Adv. Math. 231 (2012), no. 5, 2557–2572. Zbl1257.03076MR2970459DOI10.1016/j.aim.2012.06.029
  10. Ding L., Gao S., 10.1016/j.aim.2007.01.014, Adv. Math. 213 (2007), 887–901. Zbl1120.03026MR2332614DOI10.1016/j.aim.2007.01.014
  11. Ellis R., 10.1090/S0002-9939-1971-0283752-5, Proc. Amer. Math. Soc. 30 (1971), 599–602. MR0283752DOI10.1090/S0002-9939-1971-0283752-5
  12. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  13. Fay T.H., 10.1017/S0004972700024291, Bull. Austral. Math. Soc. 13 (1975), 117–119. Zbl0302.18001MR0387474DOI10.1017/S0004972700024291
  14. Fried M.D., Jarden M., Field Arithmetic, A Series of Modern Surveys in Mathematics, 11, Third Edition, Springer, Berlin, 2008. Zbl1145.12001MR2445111
  15. Gao S., 10.1016/j.topol.2013.02.009, Topology Appl. 160 (2013), no. 6, 862–870. MR3028617DOI10.1016/j.topol.2013.02.009
  16. Gao S., Xuan M., On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012. 
  17. Gildenhuys D., Lim C.-K., Free pro-C-groups, Math. Z. 125 (1972), 233–254. Zbl0221.20048MR0310071
  18. Graev M.I., Theory of topological groups I, (in Russian), Uspekhi Mat. Nauk 5 (1950), 2–56. MR0036245
  19. Higasikawa M., Topological group with several disconnectedness, arXiv:math/0106105v1, 2000, 1–13. 
  20. Hewitt E., Ross K.A., Abstract Harmonic Analysis I, Springer, Berlin, 1963. 
  21. Hofmann K.H., Morris S.A., 10.1016/0166-8641(86)90016-7, Topology Appl. 23 (1986), 41–64. Zbl0627.22004MR0849093DOI10.1016/0166-8641(86)90016-7
  22. Hušek M., 10.1016/j.topol.2008.03.020, Topology Appl. 155 (2008), 1493–1501. Zbl1159.54006MR2435145DOI10.1016/j.topol.2008.03.020
  23. Isbell J., Uniform Spaces, American Mathematical Society, Providence, 1964. Zbl0124.15601MR0170323
  24. Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topol. Symp. 1986, Z. Frolík, ed., Heldermann, Berlin, 1988, pp. 323-330. MR0952617
  25. Kulpa W., On uniform universal spaces, Fund. Math. 69 (1970), 243–251. Zbl0203.55701MR0273562
  26. Lemin A.Yu., Isosceles metric spaces and groups, in Cardinal invariants and mappings of topological spaces, Izhevsk, 1984, pp. 26–31. MR0845083
  27. Lemin A.Yu., 10.1007/s00012-003-1806-4, Algebra Universalis 50 (2003), 35–49. Zbl1094.54004MR2026825DOI10.1007/s00012-003-1806-4
  28. Lemin A.Yu., Smirnov Yu.M., 10.1070/RM1986v041n06ABEH004235, Russian Math. Surveys 41 (1986), no. 6, 213–214. MR0890503DOI10.1070/RM1986v041n06ABEH004235
  29. Markov A.A., On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64. MR0012301
  30. Megrelishvili M., Compactification and Factorization in the Category of G -spaces, in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S. Maclane, eds., World Scientific, Singapore, 1989, pp. 220–237. MR1047903
  31. Megrelishvili M., Free topological G-groups, New Zealand J. Math. 25 (1996), no. 1, 59–72. Zbl0848.22003MR1398366
  32. Megrelishvili M., 10.1007/PL00005960, Semigroup Forum 57 (1998), 101–126. Zbl0916.47029MR1621881DOI10.1007/PL00005960
  33. Megrelishvili M., Compactifications of semigroups and semigroup actions, Topology Proc. 31 (2007), no. 2, 611–650. MR2476633
  34. Megrelishvili M., Scarr T., 10.4064/fm167-3-4, Fund. Math. 167 (2001), no. 3, 269–275. Zbl0967.54037MR1815091DOI10.4064/fm167-3-4
  35. Megrelishvili M., Shlossberg M., 10.1016/j.topol.2011.06.069, Topology Appl. 159 (2012), 2497–2505. Zbl1247.22002MR2921838DOI10.1016/j.topol.2011.06.069
  36. Megrelishvili M., Shlossberg M., Notes on non-archimedean topological groups, First version (2010) of arxiv.org/abs/1010.5987. Zbl1247.22002
  37. Morris S.A., 10.1017/S0004972700041393, Bull. Austral. Math. Soc. 1 (1969), 145–160. Zbl0980.22004MR0259010DOI10.1017/S0004972700041393
  38. Nummela E.C., 10.1016/0016-660X(78)90060-0, Gen. Topology Appl. 9 (1978), 155–167. Zbl0388.18001MR0492044DOI10.1016/0016-660X(78)90060-0
  39. Nummela E.C., 10.1016/0166-8641(82)90009-8, Topology Appl. 13 (1982), no. 1, 77–83. Zbl0471.22001MR0637429DOI10.1016/0166-8641(82)90009-8
  40. Pestov V.G., Neighborhoods of identity in free topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985, no. 3, 8–10. MR0802607
  41. Pestov V.G., 10.1017/S0004972700015665, Bull. Austral. Math. Soc. 48 (1993), 209–249. MR1238798DOI10.1017/S0004972700015665
  42. Pestov V.G., Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262. Zbl0891.22003MR1601659
  43. Pestov V.G., 10.1090/S0002-9947-98-02329-0, Trans. Amer. Math. Soc. 350 (1998), 4149–4175. Zbl0911.54034MR1608494DOI10.1090/S0002-9947-98-02329-0
  44. Pestov V., Topological groups: where to from here?, Topology Proc. 24 (1999), 421–502; http://arXiv.org/abs/math.GN/9910144. Zbl1026.22002MR1876385
  45. Pestov V., Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006. Zbl1123.37003MR2277969
  46. Ribes L., Zalesskii P.A., Profinite Groups, 2nd ed., Springer, Berlin, 2010. Zbl1197.20022MR2599132
  47. Roelcke W., Dierolf S., Uniform Structures on Topological Groups and their Quotients, Mc Graw-hill, New York, 1981. Zbl0489.22001MR0644485
  48. van Rooij A.C.M., Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978. Zbl0396.46061MR0512894
  49. Savchenko A., Zarichnyi M., 10.1016/j.topol.2009.08.015, Topology Appl. 157 (2010), 724–729. Zbl1185.54031MR2585405DOI10.1016/j.topol.2009.08.015
  50. Schikhof W.H., 10.1016/1385-7258(84)90056-8, Indag. Math. 46 (1984), 51–53. Zbl0537.46060MR0748978DOI10.1016/1385-7258(84)90056-8
  51. Sipacheva O.V., 10.1007/s10958-005-0445-z, J. Math. Sci. (N.Y.) 131 (2005), no. 4, 5765–5838. MR2056625DOI10.1007/s10958-005-0445-z
  52. Schröder L., 10.1016/j.topol.2007.04.022, Topology Appl. 155 (2008), 1576–1579. Zbl1149.54020MR2435150DOI10.1016/j.topol.2007.04.022
  53. Shakhmatov D., Pelant J., Watson S., A universal complete metric abelian group of a given weight, in Topology with Applications (Szekszárd, 1993), 431–439, Bolyai Soc. Math. Stud., 4, János Bolyai Mathematical Society, Budapest, 1995. Zbl0887.54032MR1374823
  54. Shakhmatov D., Spěvák J., 10.1016/j.topol.2009.06.022, Topology Appl. 157 (2010), 1518–1540. Zbl1195.54040MR2610463DOI10.1016/j.topol.2009.06.022
  55. Teleman S., Sur la représentation linéare des groupes topologiques, Ann. Sci. Ecole Norm. Sup. 74 (1957), 319–339. MR0097458
  56. Tkachenko M.G., On topologies of free groups, Czechoslovak Math. J. 34 (1984), 541–551. Zbl0584.22001MR0764436
  57. Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl0699.54011MR1056185
  58. Uspenskij V.V., 10.1070/IM1991v037n03ABEH002163, Math. USSR Izvestiya 37 (1991), 657–680. Zbl0739.22002MR1098628DOI10.1070/IM1991v037n03ABEH002163
  59. Uspenskij V.V., 10.1016/0166-8641(94)90055-8, Topology Appl. 57 (1994), 287–294. Zbl0810.22002MR1278029DOI10.1016/0166-8641(94)90055-8
  60. Warner S., Topological Fields, North Holland Mathematics Studies, 157, North-Holland-Amsterdam, London, New York, Tokyo, 1993. Zbl0683.12014MR1002951

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.