Free non-archimedean topological groups
Michael Megrelishvili; Menachem Shlossberg
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 273-312
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMegrelishvili, Michael, and Shlossberg, Menachem. "Free non-archimedean topological groups." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 273-312. <http://eudml.org/doc/252529>.
@article{Megrelishvili2013,
abstract = {We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf \{NA\}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf \{NA\}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf \{NA\}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf \{NA\}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay [Fay]: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf \{TGR\}$ is not an epimorphism in the category $\mathbf \{TGR\}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262]. Our results provide a convenient way to produce surjectively universal $\mathbf \{NA\}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [Graev ultrametrics and surjectively universal non-Archimedean Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].},
author = {Megrelishvili, Michael, Shlossberg, Menachem},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {epimorphisms; free profinite group; free topological $G$-group; non-archimedean group; ultra-metric; ultra-norm; -free topological group of a uniform space; non-archimedean group; non-archimedean uniform space; metrizability; epimorphism; automorphizable actions; surjectively universal group},
language = {eng},
number = {2},
pages = {273-312},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Free non-archimedean topological groups},
url = {http://eudml.org/doc/252529},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Megrelishvili, Michael
AU - Shlossberg, Menachem
TI - Free non-archimedean topological groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 273
EP - 312
AB - We study free topological groups defined over uniform spaces in some subclasses of the class $\mathbf {NA}$ of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean $\mathbf {NA}$ groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another contrasting advantage is that the induced topological group actions on free abelian $\mathbf {NA}$ groups frequently remain continuous. One of the main applications is: any epimorphism in the category $\mathbf {NA}$ must be dense. Moreover, the same methods improve the following result of T.H. Fay [Fay]: the inclusion of a proper open subgroup $H\hookrightarrow G\in \mathbf {TGR}$ is not an epimorphism in the category $\mathbf {TGR}$ of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262]. Our results provide a convenient way to produce surjectively universal $\mathbf {NA}$ abelian and balanced groups. In particular, we unify and strengthen some recent results of Gao [Graev ultrametrics and surjectively universal non-Archimedean Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012] as well as classical results about profinite groups which go back to Iwasawa and Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].
LA - eng
KW - epimorphisms; free profinite group; free topological $G$-group; non-archimedean group; ultra-metric; ultra-norm; -free topological group of a uniform space; non-archimedean group; non-archimedean uniform space; metrizability; epimorphism; automorphizable actions; surjectively universal group
UR - http://eudml.org/doc/252529
ER -
References
top- Arens R., Eells J., 10.2140/pjm.1956.6.397, Pacific J. Math. 6 (1956), 397–403. Zbl0073.39601MR0081458DOI10.2140/pjm.1956.6.397
- Arhangel'skii A., Tkachenko M., Topological groups and related structures, Atlantis Studies in Mathematics, 1, Series Editor: J. van Mill, Atlantis Press, World Scientific, Amsterdam-Paris, 2008. MR2433295
- Becker H., Kechris A., The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Notes Ser., 232, Cambridge University Press, Cambridge, 1996. Zbl0949.54052MR1425877
- Dierolf S., Roelcke W., Uniform Structures in Topological Groups and their Quotients, McGraw-Hill, New York, 1981.
- Dikranjan D., Tholen W., Categorical Structure of Closure Operators with Applications to Topology, Algebra and Discrete Mathematics, Mathematics and its Applications, 346, Kluwer Academic Publ., Dordrecht, 1995. Zbl0853.18002MR1368854
- Dikranjan D., 10.1016/S0166-8641(97)00141-7, Topology Appl. 85 (1998), 53–91. Zbl0983.54037MR1617454DOI10.1016/S0166-8641(97)00141-7
- Dikranjan D., Megrelishvili M., Minimality properties in topological groups, in Recent Progress in General Topology III(to appear).
- Dikranjan D., Tkachenko M., 10.1016/S0166-8641(99)00235-7, Topology Appl. 112 (2001), 259–287. Zbl0979.54038MR1824163DOI10.1016/S0166-8641(99)00235-7
- Ding L., 10.1016/j.aim.2012.06.029, Adv. Math. 231 (2012), no. 5, 2557–2572. Zbl1257.03076MR2970459DOI10.1016/j.aim.2012.06.029
- Ding L., Gao S., 10.1016/j.aim.2007.01.014, Adv. Math. 213 (2007), 887–901. Zbl1120.03026MR2332614DOI10.1016/j.aim.2007.01.014
- Ellis R., 10.1090/S0002-9939-1971-0283752-5, Proc. Amer. Math. Soc. 30 (1971), 599–602. MR0283752DOI10.1090/S0002-9939-1971-0283752-5
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Fay T.H., 10.1017/S0004972700024291, Bull. Austral. Math. Soc. 13 (1975), 117–119. Zbl0302.18001MR0387474DOI10.1017/S0004972700024291
- Fried M.D., Jarden M., Field Arithmetic, A Series of Modern Surveys in Mathematics, 11, Third Edition, Springer, Berlin, 2008. Zbl1145.12001MR2445111
- Gao S., 10.1016/j.topol.2013.02.009, Topology Appl. 160 (2013), no. 6, 862–870. MR3028617DOI10.1016/j.topol.2013.02.009
- Gao S., Xuan M., On non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012.
- Gildenhuys D., Lim C.-K., Free pro-C-groups, Math. Z. 125 (1972), 233–254. Zbl0221.20048MR0310071
- Graev M.I., Theory of topological groups I, (in Russian), Uspekhi Mat. Nauk 5 (1950), 2–56. MR0036245
- Higasikawa M., Topological group with several disconnectedness, arXiv:math/0106105v1, 2000, 1–13.
- Hewitt E., Ross K.A., Abstract Harmonic Analysis I, Springer, Berlin, 1963.
- Hofmann K.H., Morris S.A., 10.1016/0166-8641(86)90016-7, Topology Appl. 23 (1986), 41–64. Zbl0627.22004MR0849093DOI10.1016/0166-8641(86)90016-7
- Hušek M., 10.1016/j.topol.2008.03.020, Topology Appl. 155 (2008), 1493–1501. Zbl1159.54006MR2435145DOI10.1016/j.topol.2008.03.020
- Isbell J., Uniform Spaces, American Mathematical Society, Providence, 1964. Zbl0124.15601MR0170323
- Katětov M., On universal metric spaces, in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topol. Symp. 1986, Z. Frolík, ed., Heldermann, Berlin, 1988, pp. 323-330. MR0952617
- Kulpa W., On uniform universal spaces, Fund. Math. 69 (1970), 243–251. Zbl0203.55701MR0273562
- Lemin A.Yu., Isosceles metric spaces and groups, in Cardinal invariants and mappings of topological spaces, Izhevsk, 1984, pp. 26–31. MR0845083
- Lemin A.Yu., 10.1007/s00012-003-1806-4, Algebra Universalis 50 (2003), 35–49. Zbl1094.54004MR2026825DOI10.1007/s00012-003-1806-4
- Lemin A.Yu., Smirnov Yu.M., 10.1070/RM1986v041n06ABEH004235, Russian Math. Surveys 41 (1986), no. 6, 213–214. MR0890503DOI10.1070/RM1986v041n06ABEH004235
- Markov A.A., On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3–64. MR0012301
- Megrelishvili M., Compactification and Factorization in the Category of -spaces, in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S. Maclane, eds., World Scientific, Singapore, 1989, pp. 220–237. MR1047903
- Megrelishvili M., Free topological G-groups, New Zealand J. Math. 25 (1996), no. 1, 59–72. Zbl0848.22003MR1398366
- Megrelishvili M., 10.1007/PL00005960, Semigroup Forum 57 (1998), 101–126. Zbl0916.47029MR1621881DOI10.1007/PL00005960
- Megrelishvili M., Compactifications of semigroups and semigroup actions, Topology Proc. 31 (2007), no. 2, 611–650. MR2476633
- Megrelishvili M., Scarr T., 10.4064/fm167-3-4, Fund. Math. 167 (2001), no. 3, 269–275. Zbl0967.54037MR1815091DOI10.4064/fm167-3-4
- Megrelishvili M., Shlossberg M., 10.1016/j.topol.2011.06.069, Topology Appl. 159 (2012), 2497–2505. Zbl1247.22002MR2921838DOI10.1016/j.topol.2011.06.069
- Megrelishvili M., Shlossberg M., Notes on non-archimedean topological groups, First version (2010) of arxiv.org/abs/1010.5987. Zbl1247.22002
- Morris S.A., 10.1017/S0004972700041393, Bull. Austral. Math. Soc. 1 (1969), 145–160. Zbl0980.22004MR0259010DOI10.1017/S0004972700041393
- Nummela E.C., 10.1016/0016-660X(78)90060-0, Gen. Topology Appl. 9 (1978), 155–167. Zbl0388.18001MR0492044DOI10.1016/0016-660X(78)90060-0
- Nummela E.C., 10.1016/0166-8641(82)90009-8, Topology Appl. 13 (1982), no. 1, 77–83. Zbl0471.22001MR0637429DOI10.1016/0166-8641(82)90009-8
- Pestov V.G., Neighborhoods of identity in free topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1985, no. 3, 8–10. MR0802607
- Pestov V.G., 10.1017/S0004972700015665, Bull. Austral. Math. Soc. 48 (1993), 209–249. MR1238798DOI10.1017/S0004972700015665
- Pestov V.G., Epimorphisms of Hausdorff groups by way of topological dynamics, New Zealand J. Math. 26 (1997), 257–262. Zbl0891.22003MR1601659
- Pestov V.G., 10.1090/S0002-9947-98-02329-0, Trans. Amer. Math. Soc. 350 (1998), 4149–4175. Zbl0911.54034MR1608494DOI10.1090/S0002-9947-98-02329-0
- Pestov V., Topological groups: where to from here?, Topology Proc. 24 (1999), 421–502; http://arXiv.org/abs/math.GN/9910144. Zbl1026.22002MR1876385
- Pestov V., Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006. Zbl1123.37003MR2277969
- Ribes L., Zalesskii P.A., Profinite Groups, 2nd ed., Springer, Berlin, 2010. Zbl1197.20022MR2599132
- Roelcke W., Dierolf S., Uniform Structures on Topological Groups and their Quotients, Mc Graw-hill, New York, 1981. Zbl0489.22001MR0644485
- van Rooij A.C.M., Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978. Zbl0396.46061MR0512894
- Savchenko A., Zarichnyi M., 10.1016/j.topol.2009.08.015, Topology Appl. 157 (2010), 724–729. Zbl1185.54031MR2585405DOI10.1016/j.topol.2009.08.015
- Schikhof W.H., 10.1016/1385-7258(84)90056-8, Indag. Math. 46 (1984), 51–53. Zbl0537.46060MR0748978DOI10.1016/1385-7258(84)90056-8
- Sipacheva O.V., 10.1007/s10958-005-0445-z, J. Math. Sci. (N.Y.) 131 (2005), no. 4, 5765–5838. MR2056625DOI10.1007/s10958-005-0445-z
- Schröder L., 10.1016/j.topol.2007.04.022, Topology Appl. 155 (2008), 1576–1579. Zbl1149.54020MR2435150DOI10.1016/j.topol.2007.04.022
- Shakhmatov D., Pelant J., Watson S., A universal complete metric abelian group of a given weight, in Topology with Applications (Szekszárd, 1993), 431–439, Bolyai Soc. Math. Stud., 4, János Bolyai Mathematical Society, Budapest, 1995. Zbl0887.54032MR1374823
- Shakhmatov D., Spěvák J., 10.1016/j.topol.2009.06.022, Topology Appl. 157 (2010), 1518–1540. Zbl1195.54040MR2610463DOI10.1016/j.topol.2009.06.022
- Teleman S., Sur la représentation linéare des groupes topologiques, Ann. Sci. Ecole Norm. Sup. 74 (1957), 319–339. MR0097458
- Tkachenko M.G., On topologies of free groups, Czechoslovak Math. J. 34 (1984), 541–551. Zbl0584.22001MR0764436
- Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl0699.54011MR1056185
- Uspenskij V.V., 10.1070/IM1991v037n03ABEH002163, Math. USSR Izvestiya 37 (1991), 657–680. Zbl0739.22002MR1098628DOI10.1070/IM1991v037n03ABEH002163
- Uspenskij V.V., 10.1016/0166-8641(94)90055-8, Topology Appl. 57 (1994), 287–294. Zbl0810.22002MR1278029DOI10.1016/0166-8641(94)90055-8
- Warner S., Topological Fields, North Holland Mathematics Studies, 157, North-Holland-Amsterdam, London, New York, Tokyo, 1993. Zbl0683.12014MR1002951
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.