Unbounded solutions of BVP for second order ODE with p -Laplacian on the half line

Yuji Liu; Patricia J. Y. Wong

Applications of Mathematics (2013)

  • Volume: 58, Issue: 2, page 179-204
  • ISSN: 0862-7940

Abstract

top
By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.

How to cite

top

Liu, Yuji, and Wong, Patricia J. Y.. "Unbounded solutions of BVP for second order ODE with $p$-Laplacian on the half line." Applications of Mathematics 58.2 (2013): 179-204. <http://eudml.org/doc/252539>.

@article{Liu2013,
abstract = {By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.},
author = {Liu, Yuji, Wong, Patricia J. Y.},
journal = {Applications of Mathematics},
keywords = {second order differential equation on a half line; non-homogeneous boundary value problem; Leggett-Williams fixed point theorem; second order ODE; half-line; -Laplacian; three unbounded positive solutions; Leggett-Williams fixed point theorem},
language = {eng},
number = {2},
pages = {179-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unbounded solutions of BVP for second order ODE with $p$-Laplacian on the half line},
url = {http://eudml.org/doc/252539},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Liu, Yuji
AU - Wong, Patricia J. Y.
TI - Unbounded solutions of BVP for second order ODE with $p$-Laplacian on the half line
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 179
EP - 204
AB - By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.
LA - eng
KW - second order differential equation on a half line; non-homogeneous boundary value problem; Leggett-Williams fixed point theorem; second order ODE; half-line; -Laplacian; three unbounded positive solutions; Leggett-Williams fixed point theorem
UR - http://eudml.org/doc/252539
ER -

References

top
  1. Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers Dordrecht (1999). (1999) Zbl1157.34301MR1680024
  2. Agarwal, R. P., O'Regan, D., Wong, P. J. Y., 10.1023/B:ACAP.0000013257.42126.ca, Acta Appl. Math. 80 (2004), 57-94. (2004) Zbl1053.45004MR2034575DOI10.1023/B:ACAP.0000013257.42126.ca
  3. Agarwal, R. P., O'Regan, D., Wong, P. J. Y., 10.1016/S0895-7177(04)90536-5, Math. Comput. Modelling 39 (2004), 1113-1150. (2004) Zbl1068.45001MR2069517DOI10.1016/S0895-7177(04)90536-5
  4. Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Triple solutions of constant sign for a system of Fredholm integral equations, Cubo 6 (2004), 1-45. (2004) Zbl1082.45004MR2124824
  5. Djebali, S., Mebarki, K., 10.1016/j.camwa.2007.11.023, Comput. Math. Appl. 55 (2008), 2940-2952. (2008) Zbl1142.34316MR2401442DOI10.1016/j.camwa.2007.11.023
  6. Guo, Y., Yu, C., Wang, J., Existence of three positive solutions for m -point boundary value problems on infinite intervals, Nonlinear Anal., Theory Methods Appl. 71 (2009), 717-722. (2009) Zbl1172.34310MR2527493
  7. Kang, P., Wei, Z., 10.1016/j.amc.2007.06.004, Appl. Math. Comput. 196 (2008), 402-415. (2008) Zbl1136.34026MR2382579DOI10.1016/j.amc.2007.06.004
  8. Leggett, R. W., Williams, L. R., 10.1512/iumj.1979.28.28046, Indiana Univ. Math. J. 28 (1979), 673-688. (1979) Zbl0421.47033MR0542951DOI10.1512/iumj.1979.28.28046
  9. Lian, H., Ge, W., 10.1016/j.aml.2005.10.018, Appl. Math. Lett. 19 (2006), 1000-1006. (2006) Zbl1123.34307MR2246166DOI10.1016/j.aml.2005.10.018
  10. Lian, H., Ge, W., 10.1016/j.jmaa.2005.09.001, J. Math. Anal. Appl. 321 (2006), 781-792. (2006) Zbl1104.34020MR2241155DOI10.1016/j.jmaa.2005.09.001
  11. Lian, H., Pang, H., Ge, W., 10.1016/j.na.2006.09.016, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. (2007) Zbl1128.34011MR2331870DOI10.1016/j.na.2006.09.016
  12. Lian, H., Pang, H., Ge, W., 10.1016/j.jmaa.2007.04.038, J. Math. Anal. Appl. 337 (2008), 1171-1181. (2008) Zbl1136.34034MR2386366DOI10.1016/j.jmaa.2007.04.038
  13. Lian, H., Pang, H., Ge, W., Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals, Nonlinear Anal., Theory Methods Appl. 70 (2009), 2627-2633. (2009) MR2499729
  14. Liang, S., Zhang, J., 10.1016/j.amc.2007.12.016, Appl. Math. Comput. 201 (2008), 210-220. (2008) Zbl1157.34016MR2432596DOI10.1016/j.amc.2007.12.016
  15. Liang, S., Zhang, J., 10.1016/j.cam.2007.10.062, J. Comput. Appl. Math. 222 (2008), 229-243. (2008) Zbl1183.34031MR2474626DOI10.1016/j.cam.2007.10.062
  16. Liang, S., Zhang, J., The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line, Nonlinear Anal., Theory Methods Appl. 70 (2009), 3127-3139. (2009) Zbl1166.34304MR2503058
  17. Liu, Y., The existence of three positive solutions to integral type BVPs for second order ODEs with one-dimensional p -Laplacian, Bull. Malays. Math. Sci. Soc. (2) 35 359-372 (2012). (2012) Zbl1243.34036MR2893462
  18. Liu, Y., Boundary value problem for second order differential equations on unbounded domains, Acta Anal. Funct. Appl. 4 (2002), 211-216 Chinese. (2002) Zbl1038.34030MR1956716
  19. Liu, Y., 10.1016/S0096-3003(02)00431-9, Appl. Math. Comput. 144 (2003), 543-556. (2003) Zbl1036.34027MR1994092DOI10.1016/S0096-3003(02)00431-9
  20. O'Regan, D., Yan, B., Agarwal, R. P., 10.1016/j.cam.2006.02.055, J. Comput. Appl. Math. 205 (2007), 751-763. (2007) Zbl1124.34008MR2329651DOI10.1016/j.cam.2006.02.055
  21. Palamides, P. K., Galanis, G. N., Positive, unbounded and monotone solutions of the singular second Painlevé equation on the half-line, Nonlinear Anal., Theory Methods Appl. 57 (2004), 401-419. (2004) Zbl1053.34028MR2064098
  22. Tian, Y., Ge, W., 10.1016/j.jmaa.2006.02.075, J. Math. Anal. Appl. 325 (2007), 1339-1349. (2007) Zbl1110.34018MR2270088DOI10.1016/j.jmaa.2006.02.075
  23. Wei, Y., Wong, P. J. Y., Ge, W., 10.1016/j.cam.2009.10.005, J. Comput. Appl. Math. 233 (2010), 2189-2199. (2010) Zbl1187.34086MR2577758DOI10.1016/j.cam.2009.10.005
  24. Yan, B., Multiple unbounded solutions of boundary value problems for second-order differential equations on the half-line, Nonlinear Anal., Theory Methods Appl. 51 (2002), 1031-1044. (2002) Zbl1021.34021MR1926083
  25. Yan, B., Liu, Y., 10.1016/S0096-3003(02)00801-9, Appl. Math. Comput. 147 (2004), 629-644. (2004) Zbl1045.34009MR2011077DOI10.1016/S0096-3003(02)00801-9
  26. Yan, B., O'Regan, D., Agarwal, R. P., 10.1016/j.cam.2005.11.010, J. Comput. Appl. Math. 197 (2006), 365-386. (2006) Zbl1116.34016MR2260412DOI10.1016/j.cam.2005.11.010
  27. Yan, B., O'Regan, D., Agarwal, R. P., Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals, Acta Appl. Math. 103 (2008), 19-57. (2008) Zbl1158.34011MR2415171
  28. Yan, B., Timoney, R. M., Positive solutions for nonlinear singular boundary value problems on the half line, Int. J. Math. Anal., Ruse 1 (2007), 1189-1208. (2007) Zbl1149.34011MR2382022
  29. Zhang, X., Liu, L., Wu, Y., 10.1016/j.amc.2006.07.056, Appl. Math. Comput. 185 (2007), 628-635. (2007) Zbl1117.34033MR2297833DOI10.1016/j.amc.2006.07.056
  30. Zima, M., 10.1006/jmaa.2000.7399, J. Math. Anal. Appl. 259 (2001), 127-136. (2001) Zbl1003.34024MR1836449DOI10.1006/jmaa.2000.7399

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.