Domination with respect to nondegenerate properties: vertex and edge removal
Mathematica Bohemica (2013)
- Volume: 138, Issue: 1, page 75-85
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSamodivkin, Vladimir D.. "Domination with respect to nondegenerate properties: vertex and edge removal." Mathematica Bohemica 138.1 (2013): 75-85. <http://eudml.org/doc/252550>.
@article{Samodivkin2013,
abstract = {In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate property $\mathcal \{P\}$, denoted by $\gamma _\{\mathcal \{P\}\} (G)$, when a graph $G$ is modified by deleting a vertex or deleting edges. A graph $G$ is $(\gamma _\{\mathcal \{P\}\}(G), k)_\{\mathcal \{P\}\}$-critical if $\gamma _\{\mathcal \{P\}\} (G-S) < \gamma _\{\mathcal \{P\}\} (G)$ for any set $S \subsetneq V(G)$ with $|S|=k$. Properties of $(\gamma _\{\mathcal \{P\}\}, k)_\{\mathcal \{P\}\}$-critical graphs are studied. The plus bondage number with respect to the property $\mathcal \{P\}$, denoted $b_\{\mathcal \{P\}\}^+ (G)$, is the cardinality of the smallest set of edges $U \subseteq E(G)$ such that $\gamma _\{\mathcal \{P\}\} (G-U) >\gamma _\{\mathcal \{P\}\} (G)$. Some known results for ordinary domination and bondage numbers are extended to $\gamma _\{\mathcal \{P\}\} (G)$ and $b_\{\mathcal \{P\}\}^+ (G)$. Conjectures concerning $b_\{\mathcal \{P\}\}^+ (G)$ are posed.},
author = {Samodivkin, Vladimir D.},
journal = {Mathematica Bohemica},
keywords = {dominating set; domination number; bondage number; additive graph property; hereditary graph property; induced-hereditary graph property; dominating set; domination number; bondage number; additive graph property; hereditary graph property; induced-hereditary graph property; vertex deletion; edge deletion},
language = {eng},
number = {1},
pages = {75-85},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Domination with respect to nondegenerate properties: vertex and edge removal},
url = {http://eudml.org/doc/252550},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Samodivkin, Vladimir D.
TI - Domination with respect to nondegenerate properties: vertex and edge removal
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 1
SP - 75
EP - 85
AB - In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate property $\mathcal {P}$, denoted by $\gamma _{\mathcal {P}} (G)$, when a graph $G$ is modified by deleting a vertex or deleting edges. A graph $G$ is $(\gamma _{\mathcal {P}}(G), k)_{\mathcal {P}}$-critical if $\gamma _{\mathcal {P}} (G-S) < \gamma _{\mathcal {P}} (G)$ for any set $S \subsetneq V(G)$ with $|S|=k$. Properties of $(\gamma _{\mathcal {P}}, k)_{\mathcal {P}}$-critical graphs are studied. The plus bondage number with respect to the property $\mathcal {P}$, denoted $b_{\mathcal {P}}^+ (G)$, is the cardinality of the smallest set of edges $U \subseteq E(G)$ such that $\gamma _{\mathcal {P}} (G-U) >\gamma _{\mathcal {P}} (G)$. Some known results for ordinary domination and bondage numbers are extended to $\gamma _{\mathcal {P}} (G)$ and $b_{\mathcal {P}}^+ (G)$. Conjectures concerning $b_{\mathcal {P}}^+ (G)$ are posed.
LA - eng
KW - dominating set; domination number; bondage number; additive graph property; hereditary graph property; induced-hereditary graph property; dominating set; domination number; bondage number; additive graph property; hereditary graph property; induced-hereditary graph property; vertex deletion; edge deletion
UR - http://eudml.org/doc/252550
ER -
References
top- Ao, S., Independent domination critical graphs, Master's Dissertation, University of Victoria (1994). (1994)
- Bange, D., Barkauskas, A., Slater, P., Efficient Dominating Sets in Graphs. Applications of Discrete Mathematics, R. D. Ringeisen, F. S. Roberts SIAM, Philadelphia, PA (1988), 189-199. (1988) MR0974633
- Bauer, D., Harary, F., Nieminen, J., Suffel, S., 10.1016/0012-365X(83)90085-7, Discrete Math. 47 (1983), 153-161. (1983) Zbl0524.05040MR0724653DOI10.1016/0012-365X(83)90085-7
- Brigham, R., Chinn, P., Dutton, R., 10.1002/net.3230180304, Networks 18 (1988), 173-179. (1988) Zbl0658.05042MR0953920DOI10.1002/net.3230180304
- Brigham, R., Haynes, T., Henning, M., Rall, D., 10.1016/j.disc.2005.09.013, Discrete Math. 305 (2005), 18-32. (2005) Zbl1078.05062MR2186680DOI10.1016/j.disc.2005.09.013
- Fricke, G., Haynes, T., Hedetniemi, S., Hedetniemi, S., Laskar, R., Excellent trees, Bull. Inst. Comb. Appl. 34 (2002), 27-38. (2002) Zbl0995.05036MR1880562
- Fulman, J., Hanson, D., MacGillivray, G., 10.1002/net.3230250203, Networks 25 (1995), 41-43. (1995) Zbl0820.05038MR1321108DOI10.1002/net.3230250203
- Goddard, W., Haynes, T., Knisley, D., 10.7151/dmgt.1228, Discuss. Math. Graph Theory 24 (2004), 239-248. (2004) Zbl1065.05069MR2120566DOI10.7151/dmgt.1228
- Hartnel, B., Rall, D., 10.1016/0012-365X(94)90111-2, Discrete Math. 128 (1994), 173-177. (1994) MR1271863DOI10.1016/0012-365X(94)90111-2
- Haynes, T., Hedetniemi, S., Slater, P., Fundamentals of domination in graphs, Marcel Dekker, New York, NY (1998). (1998) Zbl0890.05002MR1605684
- Michalak, D., 10.1016/j.disc.2003.11.054, Discrete Math. 286 (2004), 141-146. (2004) MR2084289DOI10.1016/j.disc.2003.11.054
- Mojdeh, D., Firoozi, P., 10.2298/AADM100206013M, Appl. Anal. Discrete Math. 4 (2010), 197-206. (2010) Zbl1265.05468MR2654940DOI10.2298/AADM100206013M
- Mojdeh, D., Firoozi, P., Hasni, R., On connected -critical graphs, Australas. J. Comb. 46 (2010), 25-35. (2010) Zbl1196.05064MR2598690
- Samodivkin, V., Domination with respect to nondegenerate and hereditary properties, Math. Bohem. 133 (2008), 167-178. (2008) Zbl1199.05269MR2428312
- Samodivkin, V., 10.1016/j.disc.2007.08.088, Discrete Math. 308 (2008), 5015-5025. (2008) Zbl1157.05044MR2450438DOI10.1016/j.disc.2007.08.088
- Samodivkin, V., 10.7151/dmgt.1419, Discuss. Math., Graph Theory 28 (2008), 453-462. (2008) Zbl1173.05037MR2514202DOI10.7151/dmgt.1419
- Samodivkin, V., Domination with respect to nondegenerate properties: bondage number, Australas. J. Comb. 45 (2009), 217-226. (2009) Zbl1207.05145MR2554536
- Sampathkumar, E., Neeralagi, P., Domination and neighborhood critical fixed, free and totally free points, Sankhyā 54 (1992), 403-407. (1992) MR1234719
- Sumner, D., Wojcicka, E., Graphs critical with respect to the domination number. Domination in Graphs: Advanced Topics, T. Haynes, S. T. Hedetniemi, P. Slater Marcel Dekker, New York (1998), 471-489. (1998) MR1605701
- Teschner, U., A new upper bound for the bondage number of a graphs with small domination number, Australas. J. Comb. 12 (1995), 27-35. (1995) MR1349195
- Teschner, U., The bondage number of a graphs can be much greater than , Ars Comb. 43 (1996), 81-87. (1996) MR1415976
- Walikar, H., Acharya, B., Domination critical graphs, Nat. Acad. Sci. Lett. 2 (1979), 70-72. (1979) Zbl0401.05056
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.