Solution of Whitehead equation on groups
Valeriĭ A. Faĭziev; Prasanna K. Sahoo
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 171-180
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFaĭziev, Valeriĭ A., and Sahoo, Prasanna K.. "Solution of Whitehead equation on groups." Mathematica Bohemica 138.2 (2013): 171-180. <http://eudml.org/doc/252553>.
@article{Faĭziev2013,
abstract = {Let $G$ be a group and $H$ an abelian group. Let $J^\{*\} (G, H)$ be the set of solutions $f \colon G \rightarrow H$ of the Jensen functional equation $f(xy)+f(xy^\{-1\}) = 2f(x)$ satisfying the condition $f(xyz) - f(xzy) = f(yz)-f(zy)$ for all $x, y , z \in G$. Let $Q^\{*\} (G, H)$ be the set of solutions $f \colon G \rightarrow H$ of the quadratic equation $f(xy)+f(xy^\{-1\}) = 2f(x) + 2f(y)$ satisfying the Kannappan condition $f(xyz) = f(xzy)$ for all $x, y, z \in G$. In this paper we determine solutions of the Whitehead equation on groups. We show that every solution $f \colon G \rightarrow H$ of the Whitehead equation is of the form $4f = 2 \varphi + 2 \psi $, where $2\varphi \in J^* (G, H)$ and $2\psi \in Q^* (G, H)$. Moreover, if $H$ has the additional property that $2h = 0$ implies $h = 0$ for all $h \in H$, then every solution $f \colon G \rightarrow H$ of the Whitehead equation is of the form $2f = \varphi + \psi $, where $\varphi \in J^*(G,H)$ and $2\psi (x) = B(x, x)$ for some symmetric bihomomorphism $B \colon G \times G \rightarrow H$.},
author = {Faĭziev, Valeriĭ A., Sahoo, Prasanna K.},
journal = {Mathematica Bohemica},
keywords = {homomorphism; Fréchet functional equation; Jensen functional equation; symmetric bihomomorphism; Whitehead functional equation; homomorphism; Fréchet functional equation; Jensen functional equation; symmetric bihomomorphism; Whitehead functional equation; quadratic equations},
language = {eng},
number = {2},
pages = {171-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of Whitehead equation on groups},
url = {http://eudml.org/doc/252553},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Faĭziev, Valeriĭ A.
AU - Sahoo, Prasanna K.
TI - Solution of Whitehead equation on groups
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 171
EP - 180
AB - Let $G$ be a group and $H$ an abelian group. Let $J^{*} (G, H)$ be the set of solutions $f \colon G \rightarrow H$ of the Jensen functional equation $f(xy)+f(xy^{-1}) = 2f(x)$ satisfying the condition $f(xyz) - f(xzy) = f(yz)-f(zy)$ for all $x, y , z \in G$. Let $Q^{*} (G, H)$ be the set of solutions $f \colon G \rightarrow H$ of the quadratic equation $f(xy)+f(xy^{-1}) = 2f(x) + 2f(y)$ satisfying the Kannappan condition $f(xyz) = f(xzy)$ for all $x, y, z \in G$. In this paper we determine solutions of the Whitehead equation on groups. We show that every solution $f \colon G \rightarrow H$ of the Whitehead equation is of the form $4f = 2 \varphi + 2 \psi $, where $2\varphi \in J^* (G, H)$ and $2\psi \in Q^* (G, H)$. Moreover, if $H$ has the additional property that $2h = 0$ implies $h = 0$ for all $h \in H$, then every solution $f \colon G \rightarrow H$ of the Whitehead equation is of the form $2f = \varphi + \psi $, where $\varphi \in J^*(G,H)$ and $2\psi (x) = B(x, x)$ for some symmetric bihomomorphism $B \colon G \times G \rightarrow H$.
LA - eng
KW - homomorphism; Fréchet functional equation; Jensen functional equation; symmetric bihomomorphism; Whitehead functional equation; homomorphism; Fréchet functional equation; Jensen functional equation; symmetric bihomomorphism; Whitehead functional equation; quadratic equations
UR - http://eudml.org/doc/252553
ER -
References
top- Kannappan, Pl., 10.1007/BF03322841, Results Math. 27 (1995), 368-372. (1995) Zbl0836.39006MR1331110DOI10.1007/BF03322841
- Kannappan, Pl., Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, Springer, New York (2009). (2009) Zbl1178.39032MR2524097
- Ng, C. T., 10.1007/BF01833945, Aequationes Math. 39 (1990), 85-99. (1990) Zbl0688.39007MR1044167DOI10.1007/BF01833945
- Friis, P. de Place, Stetkær, H., On the quadratic functional equation on groups, Publ. Math. Debrecen 69 (2006), 65-93. (2006) MR2228477
- Whitehead, J. H. C., 10.2307/1969511, Ann. Math. (2) 52 (1950), 51-110. (1950) Zbl0037.26101MR0035997DOI10.2307/1969511
- Yang, D., The quadratic functional equation on groups, Publ. Math. Debrecen 66 (2005), 327-348. (2005) Zbl1100.39028MR2137773
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.