Edon- – an efficient implementation of Edon- family of cryptographic hash functions
Danilo Gligoroski; Svein Johan Knapskog
Commentationes Mathematicae Universitatis Carolinae (2008)
- Volume: 49, Issue: 2, page 219-239
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGligoroski, Danilo, and Knapskog, Svein Johan. "Edon-$\mathcal {R} (256,384,512)$ – an efficient implementation of Edon-$\mathcal {R}$ family of cryptographic hash functions." Commentationes Mathematicae Universitatis Carolinae 49.2 (2008): 219-239. <http://eudml.org/doc/252558>.
@article{Gligoroski2008,
abstract = {We have designed three fast implementations of a recently proposed family of hash functions Edon–$\mathcal \{R\}$. They produce message digests of length $n=256, 384, 512$ bits and project security of $2^\{\frac\{n\}\{2\}\}$ hash computations for finding collisions and $2^\{n\}$ hash computations for finding preimages and second preimages. The design is not the classical Merkle-Damgård but can be seen as wide-pipe iterated compression function. Moreover the design is based on using huge quasigroups of orders $2^\{256\}$, $2^\{384\}$ and $2^\{512\}$ that are constructed by using only bitwise operations on 32 bit values (additions modulo $2^\{32\}$, XORs and left rotations). Initial Reference C code achieves processing speeds of 16.18 cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte on x86 (Intel and AMD microprocessors). In this paper we give their full description, as well as an initial security analysis.},
author = {Gligoroski, Danilo, Knapskog, Svein Johan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hash function; Edon–$\{\mathcal \{R\}\}$; quasigroup; hash function; Edon-; quasigroup},
language = {eng},
number = {2},
pages = {219-239},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Edon-$\mathcal \{R\} (256,384,512)$ – an efficient implementation of Edon-$\mathcal \{R\}$ family of cryptographic hash functions},
url = {http://eudml.org/doc/252558},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Gligoroski, Danilo
AU - Knapskog, Svein Johan
TI - Edon-$\mathcal {R} (256,384,512)$ – an efficient implementation of Edon-$\mathcal {R}$ family of cryptographic hash functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2008
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 49
IS - 2
SP - 219
EP - 239
AB - We have designed three fast implementations of a recently proposed family of hash functions Edon–$\mathcal {R}$. They produce message digests of length $n=256, 384, 512$ bits and project security of $2^{\frac{n}{2}}$ hash computations for finding collisions and $2^{n}$ hash computations for finding preimages and second preimages. The design is not the classical Merkle-Damgård but can be seen as wide-pipe iterated compression function. Moreover the design is based on using huge quasigroups of orders $2^{256}$, $2^{384}$ and $2^{512}$ that are constructed by using only bitwise operations on 32 bit values (additions modulo $2^{32}$, XORs and left rotations). Initial Reference C code achieves processing speeds of 16.18 cycles/byte, 24.37 cycles/byte and 32.18 cycles/byte on x86 (Intel and AMD microprocessors). In this paper we give their full description, as well as an initial security analysis.
LA - eng
KW - hash function; Edon–${\mathcal {R}}$; quasigroup; hash function; Edon-; quasigroup
UR - http://eudml.org/doc/252558
ER -
References
top- Belousov V.D., Osnovi teorii kvazigrup i lup, Nauka, Moskva, 1967. MR0218483
- Bernstein D., Salsa20, eSTREAM - ECRYPT Stream Cipher Project, Report 2005/025, http://www.ecrypt.eu.org/stream.
- Berson T.A., Differential Cryptanalysis Mod with Applications to MD5, in Advances in Cryptology - EUROCRYPT '92, Lecture Notes in Comput. Sci. 658, 1993, pp.71-80.
- Carter G., Dawson E., Nielsen L., A latin square version of DES, in Proc. Workshop of Selected Areas in Cryptography, Ottawa, Canada, 1995.
- Cooper J., Donovan D., Seberry J., Secret sharing schemes arising from Latin squares, Bull. Inst. Combin. Appl. 12 (1994), 33-43. (1994) MR1301402
- Dénes J., Keedwell A.D., 10.1016/0012-365X(92)90543-O, Discrete Math. 106/107 (1992), 157-161. (1992) MR1181910DOI10.1016/0012-365X(92)90543-O
- Coron J.-S., Dodis Y., Malinaud C., Puniya P., Merkle-Damgård revisited: How to construct a hash function, in Advances in Cryptology - CRYPTO 2005, Lecture Notes in Comput. Sci. 3621, Springer, Berlin, 2005. Zbl1145.94436MR2237321
- Damgård I.B., Collision free hash functions and public key signature schemes, in Advances in Cryptology - EUROCRYPT 87, Lecture Notes in Comput. Sci. 304, Springer, Berlin, 1988, pp.203-216.
- Damgård I.B., A design principle for hash functions, in Advances in Cryptology - CRYPTO 89, Lecture Notes in Comput. Sci. 435, Springer, New York, 1990, pp.416-427. MR1062248
- DesignTheory.org,, http://designtheory.org/, .
- Gligoroski D., Markovski S., Kocarev L., Edon-, an infinite family of cryptographic hash functions, Second NIST Cryptographic Hash Workshop, University of California - Santa Barbara, August, 2006, http://www.csrc.nist.gov/pki/HashWorkshop/2006/Papers/ GLIGOROSKIEdonR-ver06.pdf.
- Gligoroski D., On a family of minimal candidate one-way functions and one-way permutations, in print, International Journal of Network Security, ISSN 1816-3548, (see also ePrint archive http://eprint.iacr.org/2005/352.pdf for an early version of the paper).
- Joux A., Multicollisions in iterated hash functions. Application to cascaded constructions, in M. Franklin, ed., Advances in Cryptology - CRYPTO 2004, Lecture Notes in Comput. Sci. 3152, Springer, Berlin, 2004, pp.306-316. Zbl1104.68043MR2147510
- Kelsey J., Schneier B., Second preimages on -bit hash functions for much less than work, in R. Cramer, ed., Advances in Cryptology - EUROCRYPT 2005, Lecture Notes in Comput. Sci. 3494, Springer, Berlin, 2005, pp.474-490. MR2352205
- Lai X., Massey J.L., Murphy S., 10.1007/3-540-46416-6_2, in Advances in Cryptology - EUROCRYPT '91, Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques (Brighton, April 1991), Lecture Notes in Comput. Sci. 547, Springer, Berlin, 1991, pp.17-38. MR1227793DOI10.1007/3-540-46416-6_2
- Lipmaa H., Moriai S., Efficient algorithms for computing differential properties of addition, in Fast Software Encryption 2001, Lecture Notes in Comput. Sci. 2355, Springer, Berlin, 2002, pp.336-350. Zbl1073.68635
- Lipmaa H., Wallén J., Dumas P., On the additive differential probability of exclusive-or, in Fast Software Encryption 2004, Lecture Notes in Comput. Sci. 3017, Springer, Berlin, 2004, pp.317-331.
- Lucks S., Design principles for iterated hash functions, Cryptology ePrint Archive, report 2004/253.
- Markovski S., Gligoroski D., Bakeva V., Quasigroup string processing, Part 1, Makedon. Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 20 1-2 (1999), 13-28. (1999) MR1938525
- Markovski S., Gligoroski D., Bakeva V., Quasigroup and hash functions, Discrete Mathematics and Applications, Sl. Shtrakov and K. Denecke, eds., Proceedings of the 6th ICDMA, Bansko, 2001, pp.43-50. MR1928410
- McKay B.D., Rogoyski E., Latin squares of order , Electron. J. Comb. 2 (1995), http://ejc.math.gatech.edu:8080/Journal/journalhome.html. (1995) Zbl0824.05010MR1346877
- Merkle R., One way hash functions and DES, Advances in Cryptology - Crypto'89, Lecture Notes in Comput. Sci. 435, Springer, New York, 1990, pp.428-446. MR1062249
- Rosen K.H., Michaels J.G., Gross J.L., Grossman J.W., Shier D.R., Handbook of Discrete and Combinatorial Mathematics, ISBN 0-8493-0149-1, CRC Press, Boca Raton, Florida, 2000. Zbl1044.00002MR1725200
- Schnorr C.P., Vaudenay S., Black Box Cryptanalysis of hash networks based on multipermutations, Advances in Cryptology - EUROCRYPT '94, Lecture Notes in Comput. Sci. 950, Springer, Berlin, 1995, pp.47-57. MR1479648
- Shannon C.E., 10.1002/j.1538-7305.1949.tb00928.x, Bell System Tech. J. 28 (1949), 656-715. (1949) MR0032133DOI10.1002/j.1538-7305.1949.tb00928.x
- Thomsen S.S., Personal communication, May 2007.
- Wheeler D.J., Needham R.M., TEA, a tiny encryption algorithm, Fast software encryption: second international workshop, Leuven, Belgium, December 1994, Proceedings, Lecture Notes in Comput. Sci. 1008, 1995, pp.363-366. Zbl0939.94550
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.